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1. Galois extensions

Throughout this talk, K is a finite extension of Q.

The notion of a Galois extension of K is due to M. Auslander and
0. Goldman [AG59].

Let A be a finite dimensional commutative K-algebra and let
Endg(A) denote the K-algebra of K-linear maps ¢ : A — A. Let
Autk(A) denote the group of K-algebra automorphisms of A.

Let F be a finite subgroup of Autx(A) with K = AF. Let D(A, F)
denote the crossed product algebra of A by F.
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Then A is an F-Galois extension of K if the map
Jj: D(A, F) — Endg(A),

defined as j(>_,cr ag8)(t) = > g cF 3g8(t), ag, t € A, is an
isomorphism of K-algebras.

The notion of F-Galois extension generalizes the usual definition of
a Galois extension of fields.
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Let A, A’ be F-Galois extensions of K. Then A is isomorphic to A’
as F-Galois extensions of K if there exists an isomorphism of
commutative K-algebras 6 : A — A’ for which

0(g(x)) = g(0(x))

forallge F, x € A

Let Gal(K, F) denote the set of isomorphism classes of F-Galois
extensions of K.
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Example 1.

Let Map(F, K) denote the K-algebra of maps ¢ : F — K. Then
Map(F, K) is the trivial F-Galois extension of K with action
defined as

g(¢)(h) = ¢(g~*h)
for g,h € F, ¢ € Map(F, K).

The set of maps {vg}gzcr defined as
vg(h) = dg.n,

for g,h € F, is a K-basis for Map(F, K).
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The Galois extensions are completely determined by the following.

Theorem 2.
Let K be a field, let F be a finite group and let A be an F-Galois
extension of K. Then

A=LxLx---xL
—_——

n

where L is a U-Galois field extension of K for some subgroup U of
F of index n. (L is a Galois extension of K with group U in the
usual sense.)

Proof.
See[Pa90, Theorem 4.2].

O
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One of the main points of this talk is to answer the following
question: Can we recover A from the data U, L? In other words:
can A be induced from the data U, L?

The answer is yes (of course), but the method of doing so seems
to depend on whether F is abelian or not.
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2. Harrison’s induction map in the abelian case

If F is abelian, then Harrison has given an induction map, which
we now describe.

Let U < F and suppose that M € Gal(K, U).

Then by Auslander and Goldman [AG60],
M &k Map(F, K)
is a (U x F)-Galois extension of K.

The Galois action of (U x F) on M @, Map(F, K) is defined as
follows: for m® a € M ®, Map(F, K),

(v, 8)(m® a) = u(m) @ g(a).
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Since F is abelian, there is a homomorphism of groups
v:UxF—=F, (ug)— ug,
with (U x F)/ ker(y)) = F.
By Chase, Harrison, Rosenberg [CHR65],
(M @k Map(F, K)) )
is an F-Galois extension of K.

In this way, we define a map
Ty : Gal(K,U) — Gal(K, F),

M — (M @k Map(F, K))"(¥)  which is the Harrison induction
map [Hab65].
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The main result of Harrison [Ha65] is the following.

Theorem 3 (Harrison).

Let F be a finite abelian group. Let A be an F-Galois extension of
K. Then there exists a subgroup U < F and a U-Galois extension
L of K for which

Ty(L) = A,

i.e., A can be induced from the data U, L.

A sketch of the proof is worth looking at.
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Proof.
By Theorem 2,

A=LxLx---xL, (1)
—_————
n
where L is a U-Galois field extension of K for some subgroup U of

F of index n.

Actually, if € is the minimal idempotent corresponding to the first
component of (1), then U={g € F: ge =€} and L = Ae.
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Since U < F, there is a Harrison induction map:
Ty :Gal(K,U) — Gal(K, F),
defined as follows: for M € Gal(K, U),

Tu(M) = (M @k Map(F, K))ker®¥),

We need to show that
A= Ty(L) = (L®k Map(F, K)) ™),

as F-Galois extensions of K.
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To this end, we define a map
0:A— (Lok Map(F, K))ke®)
by the rule

6(a) = g H(a)e® vy,

geF
for a € A.

Then, 6 is an isomorphism of F-Galois extensions of K.
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Indeed, let f € F (f is identified with (1,f) € U x F). Then

f(0(a)) = (1,£)(0(a))
= (L,f) Zg 1 a)e® vg
geF

= Zg e®v,cg

geF

Now, replacing g with f~!g yields

dgMa)eovg = > (Flg) Ha)e® vi(rg

geF f-lgeF

= Y g fla)eoy

f-lgeF

= 0(f(a)).
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The main point is that in the case that F is abelian, every F-Galois
extension of K can be written in the form

A= (L @k Map(F, K))*®),

for some subgroup U < F and some L € Gal(K, U).

Or: for F abelian, a given F-Galois extension A gives rise to the
data U, L and this data can be used to recover the original
F-Galois extension A.

16 /48



3. The Induction map in the general case

In the case that F is non-abelian, the construction of the map Ty
as above is not possible: the map U x F — F may not be a
homomorphism.

Pareigis [Pa90], has addressed this issue and has extended the map
Ty (now written Ty) to include non-abelian groups.

Moreover, the analog of Harrison's main result holds: an arbitrary

F-Galois extension A can be induced from some pair U, L, i.e.,
Tu(L) = A for some U < F and some U-Galois extension L/K.
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We describe Pareigis’ induction map.
Let U < F and suppose that M € Gal(K, U) with n = [F : U].

Let T ={g1,842,-..,8n} be a left transversal for U in F and let

A=MxMx---x M

n

with minimal orthogonal idempotents e, e, ..., ep.

Let ¢ : F — S, be defined as ¢(f)(i) = if fg;U = gjU.
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Define an action of F on A as follows: for f € F,

Zmel —Z g(f)()fg:)( m;)e € (F)(i)>

i=1

formje M, 1 <i<n.
Then A is an F-Galois extension of K [Pa90, Theorem 4.2].

In this way, we define a map

TU : ga/(K, U) — ga/(K, F)>

M— Mx M x ---x M, which is the Pareigis induction map.

n
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We can now extend Harrison's result to any finite group.

Theorem 4.

Let F be a finite group. Let A be an F-Galois extension of K.

Then there exists a subgroup U < F and a U-Galois extension L of
K for which

Tu(L) = A,
i.e., A can be induced from the data U, L.
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Proof. (Sketch.)
By Theorem 2,

A=LxLx---xL, (2)
—_————
n
where L is a U-Galois field extension of K for some subgroup U of

F of index n.

Actually, if € is the minimal idempotent corresponding to the first
component of (2), then U ={g € F: ge =¢€}.
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Now with the data U, L, we construct the F-Galois extension A’
using the induction map of Pareigis:

A=Ty(l)=LxLx--xL,
—_———

n

using the left transversal {g1,42,...,8n} for Uin F.

We claim that A= A’ as F-Galois extensions of K. To this end we

define a map
6:A— A

by the rule
n n
00> he) =Y g (h)ei,
i=1 i=1

for e, 1<i<n.
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Now, for f € F,

FO0 he)) = fO_ g (he)
i=1 i=1
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And so, 6 : A— A’ is an isomorphism of F-Galois extensions.
O

Consequently, for any finite group F, every F-Galois extension of
K can be written in the form

A= Ty(L),

for some subgroup U < F and some element L € Gal(K, U), where
Ty is the Pareigis induction map.

Equivalently, a given F-Galois extension A gives rise to the data
U, L and this data can be used to recover the original F-Galois
extension A.
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So, given a finite group F, a subgroup U < F, and a U-Galois
extension L/K, we can construct (induce) an F-Galois extension A
using the Pareigis induction map:

A= Ty(L).

In the case that F is abelian, we can construct another F-Galois
extension B using the Harrison induction map:

B = Ty(L).

And we expect (of course!) that A= B as F-Galois extensions of
K. Here is an example.
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Example 5.

Let F = C4 = {1,0,02,03} be the cyclic group of order 4 and let
U = G, = {1,052} denote the cyclic subgroup of order 2. Let

L = Q(+/2), so that G, is the Galois group of L/Q.

If we use the Pareigis induction map with the data G, Q(v/2), we
obtain the (4-Galois extension

A=Q(V2)e & Q(V2)es,

where the C4-Galois action is defined by

o((ao+al\/§)e1€9(bg+b1\/§)ez) = (bo—blﬁ)el@(aoJral\@)ez,

for ag, ai, by, b1 € Q.
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Now, using the Harrison induction map, the same data CQ,Q(\@),
yields the C4-Galois extension

B = (Q(V2) ®g Map(Ca, Q))*"¥).

where
ker(v)) = {(1,1), (62, 02)}

is the kernel of the group homomorphism ¢ : G x G — (4,
defined by group product.
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By direct computation of the fixed ring, every element of B has

the form
(a0 + a1V2) @ vi + (a0 — a1V2) ® v,

+(bo + b1\/§) ® Vo + (bp — bl\ﬁ) & Vg3,

for some ag, a1, by, b1 € Q.
The C4-Galois action is given as

(1,0)((a0 + a1V2) @ v1 + (a0 — a1V2) ® v,,2
+(bo + b1V2) @ vy + (b — b1V2) ® v,3.)
= (by — b1V2) @ vi + (bg + b1V2) ® v,2
+(a0 + a1V2) ® vy + (a0 — a1V2) ® v,3).

Evidentially, A= B as (4-Galois extensions of K.

28/48



4. The Haggenmiiller-Pareigis bijection

Now, let N denote a finitely generated group with finite
automorphism group F = Aut(N).

Let K[N] denote the group ring K-Hopf algebra and let B be a
finite dimensional commutative K-algebra.

A B-form of K[N] is a K-Hopf algebra A for which
B ok A B®k K[N] = B[N]

as B-Hopf algebras.
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A form of K[N] is a K-Hopf algebra for which there exists a
commutative, finite dimensional K-algebra B with

B ®k A= B ®k K[N] = B[N],
as B-Hopf algebras.
The trivial form of K[N] is K[N].
Let Form(B/K, K[N]) denote the collection of the isomorphism

classes of the B-forms of K[N] and let Form(K[N]) denote the
collection of the isomorphism classes of the forms of K[N].
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Due to R. Haggenmiiller and B. Pareigis [HP86, Theorem 5], there
exists a bijection

© : Gal(K, F) — Form(K[N]),

which gives a 1-1 correspondence between the isomorphism classes
of F-Galois extensions of K and forms of K[N], where
F = Aut(N).

For an F-Galois extension A of K, the map © is given explicitly as
the fixed ring
O(A) = (AN,

where F acts on A through the Galois action and on N as
automorphisms. The fixed ring (A[N])F is an A-form of K[N] and
so belongs to Form(K[N]).
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When N =7, G3, G4, or G, we have F = Aut(N) = G,.

In these cases, © has been used to construct all of the Hopf
algebra forms of the group ring Hopf algebra K[N] (they are the
images of the quadratic extensions of K). See [HP86, Theorem 6].

In the paper [KU25], Kohl and U. have computed the preimages
under © of certain Hopf forms of K[N]. These Hopf forms arise in

the following way.

Let E/K be a Galois extension with group G, and let
A : G — Perm(G) denote the left regular representation.
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Let (Hpn, -n) be a Hopf-Galois structure on E/K corresponding to
a regular subgroup N < Perm(G) that is normalized by \(G).

Necessarily, |[N| = |G|, yet we may have N 2 G as groups; N is the
type of (Hpn, n).

Moreover, the K-Hopf algebra Hy is a Hopf-algebra form of K[N],
that is,
E®x Hy = E @k K[N] = E[N],

as E-Hopf algebras.
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Since E/K is Galois with group G, we may use Galois descent to
describe Hy € Form(K[N]).

Let Fy = Aut(N). The E-form Hy of K[N] corresponds to a
1-cocycle (homomorphism)

QN:G—>FN

HY(G, Aut(K[N])(E)) = HY(G, Fy).

The homomorphism gy is given as conjugation by elements of
A(G). The kernel of gy is a normal subgroup of G defined as

Go={g€G|Ng)nAg™")=nne N}

The quotient group G/ Gy is isomorphic to a subgroup U of Fy.
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Let Eg = E%. Then Ey is Galois extension of K with group U. So
the Hopf algebra form Hy of K[N] determines the data U, Eo.

And using the Pareigis induction map
Tu : Gal(K,U) — Gal(K, Fn),
we compute Ty(Ep), which is an Fy-Galois extension of K.

Here is a main result of [KU25]:

Theorem 6.

Let E/K be a Galois extension with group G and let (Hy,-n) be a
Hopf-Galois structure on E/K of type N. Then Ty(Ep) is the
preimage of Hy under ©
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Proof. We know that ©(B) = Hy for some B in Gal(K, Fy). By
Theorem 4, B is induced from the data V < F, L/K, i.e,,

B = Ty(L) for some V-Galois extension L/K.

The proof amounts to showing that U = V and Ey = L, so that

B =Tvy(L) = Tu(Eo).
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Now, let (Hp/,-n7) be some other Hopf-Galois structure on E/K
corresponding to a regular subgroup N’ < Perm(G) normalized by
A(G). Then (Hpy,-n) is of the same type as (Hy,-n) if N = N.

Researchers have studied the problem of determining the K-Hopf
algebra isomorphism classes of the Hopf algebras arising from the
Hopf-Galois structures on E/K of the same type.

From the work of Koch, Kohl, Truman and U., we have the
following criterion.
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Theorem 7 (KKTU19, Theorem 2.2).

Let E/K be a Galois extension with group G. Let (Hp,n),
(Hnr, -n1) be Hopf-Galois structures on E /K of the same type N.
Then Hy =2 Hp: as K-Hopf algebras if and only if there exists a
A(G)-invariant isomorphism & : N — N.

We give an extension (of sorts) of Theorem 7.
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To this end, first note that since the Hopf-Galois structures
(Hn,-n), (Hnr, -nr) are of the same type N, there exists an
isomorphism of groups

PN — N.

Set Fyy = Aut(N), Fyr = Aut(N’). Then 1) yields the isomorphism
¢A . FN’ — FN-
Hy is a Hopf form of K[N] and so corresponds to a

homomorphism oy : G — Fy in HY(G, Fy).

Hp is a Hopf form of K[N’'] and so corresponds to a
homomorphism op: : G — Fpyr in HY(G, Far).
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But, Hy is also a Hopf form of K[N] and corresponds to a
homomorphism ©on/ : G — Fy in HY(G, Fy).

Put Go(N) = ker(on) and Go(N') = ker(ops) and
UN = G/GO(N) < FN and UN’ = G/GO(N/) < FN"

Let Eg(N) denote the fixed field of Go(N), so that Uy is its Galois
group as a subgroup of Fy.

And let Eqo(N') be the fixed field of Go(N') so that Upr is its Galois
group as a subgroup of Fpy.

But as a subgroup of Fp, the Galois group of Eo(N') is @(UNI).
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Set
AUN = TUN(EO(N))

and
_ T /
Ay = Ti(uy (Fo(V))-

Then Ay, is the preimage of Hy and AIZJ(UN/) is the preimage of
Hp: under the Haggenmiiller-Pareigis bijection

© : Gal(K, Fy) — Form(K[N]).

We now have an isomorphism criterion that extends Theorem 7.
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Theorem 8.
Let E/K be a Galois extension with group G. Let (Hp,n),
(Hnr, -nv) be Hopf-Galois structures on E /K corresponding to
regular subgroups N, N' of Perm(G), respectively, of the same
type N. Let ) : N’ — N be an isomorphism. The following are
equivalent:

1. Ay, = Az[z(UN,) as Fy-Galois extensions of K.

2. Hy = Hpr as K-Hopf algebras.

3. Z’he 1-cocycle on : G — Fp is cohomologous to the 1-cocycle

von - G — Fy.
4. There exists a \(G)-invariant isomorphism & : N — N.
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Proof. We prove 3 < 4: Suppose that £ : N — N is a
A(G)-invariant isomorphism. Then for all g € G, ' € N/,

(&) = &(5n"),
which is equivalent to

on(g)(E(n)) = Elon(8)())-

Note that £ = vt for some automorphism v : N — N (just set

v=E&).
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Let ' = £~1(n) for some n € N. Then we obtain

on(g)(n)

I
—
N

for all g € G, and so gy is cohomologous to 12@/\//.
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Conversely, suppose that gy is cohomologous to QﬁgN/, i.e.,
suppose that there exists a fixed v € Fy for which

bon(g) = von(g)r™

forall g € G.

Then
Yon (g)y ™t =von(g)v T,

and so,

(v M)on(g) = on(g) (v ),

where 719 : N’ — N is an isomorphism.
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Now, from (3),

(v 1) (e (€)(1)) = on(e) (v )()).

forge G, € N, and so,

() En) = () (0)).

Thus v~ 14 : N/ — N is a A(G)-invariant isomorphism.
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