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Many thanks to Griff for organizing this
conference every year!

Our project actually started last year at
this conference from Lorenzo’s talk.
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Background
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Hopf–Galois correspondence

Theorem (Chase-Sweedler 1969)

Let L/K be any finite extension.

For any Hopf-Galois structure H on L/K , we have an injective correspondence

ΦH : {K -Hopf subalgebras of H} −→ {intermediate fields of L/K}

H ′ 7−→ LH′

induced by the fixed field operator

LH′ = {x ∈ L | h′ · x = ε(h′)x for all h′ ∈ H ′}.

We shall refer to the above map ΦH as the Hopf–Galois correspondence for H.

In this talk, we will consider the case when L/K is a Galois extension.

Notation. For any group G , we shall write Sym(G) for its symmetric group, and λ : G −→ Sym(G); λ(σ) = (x 7→ σx)

ρ : G −→ Sym(G); ρ(σ) = (x 7→ xσ−1)

for its left and right regular representations, respectively.
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Hopf–Galois structures and regular subgroups

Theorem (Greither-Pareigis 1987)

Let L/K be a finite Galois extension with Galois group G .

There is a one-to-one correspondence between{
regular subgroups of Sym(G)

that are normalized by λ(G)

}
−→ {Hopf–Galois structures on L/K}

N 7−→ HN

that is explicitly defined by

HN = (L[N])G =

∑
η∈N

`ηη ∈ L[N]

∣∣∣∣∣ σ(`η) = `λ(σ)ηλ(σ)−1 for all σ ∈ G

 .

Note: G acts on N via conjugation by λ(G). The action of HN on L is given by∑
η∈N

`ηη

 · x =
∑
η∈N

`ηη
−1(1G )(x) for all x ∈ L.

The type of HN is defined to be the isomorphism class of the regular subgroup N.
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The classical and canonical non-classical structures

Let L/K be a finite Galois extension with Galois group G .{
regular subgroups of Sym(G)

that are normalized by λ(G)

}
! {Hopf–Galois structures on L/K}

Obviously, the images of the left and right regular representations λ : G −→ Sym(G); λ(σ) = (x 7→ σx)

ρ : G −→ Sym(G); ρ(σ) = (x 7→ xσ−1)

of G are regular subgroups of Sym(G) that are normalized by λ(G).

Definition

The classical structure on L/K is the Hopf–Galois structure Hρ := Hρ(G).

The canonical non-classical structure on L/K is the Hopf–Galois structure Hλ := Hλ(G).

Remark 1. In the case that G is abelian, of course ρ(G) = λ(G), so the classical

and canonical non-classical structures coincide.

Remark 2. The classical structure can be identified with the group ring K [G ], and

the Hopf–Galois correspondence for Hρ is the usual Galois correspondence.
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The classical and canonical non-classical structures

Let L/K be a finite Galois extension with Galois group G .

K

L
Hρ The classical structure

LG ′ ∈ ΦHρ

yield all intermediate fields for

G ′ ranging over all subgroups of G

Hopf–Galois correspondence is
bijective for every Galois group G

The canonical
non-classical structure

Hλ

ΦHλ 3 LG ′

⇔ G ′ is normal in G

Hopf–Galois correspondence is
bijective if and only if G is Dedekind

Theorem (Dedekind) The original slides contained a mistake here. I am very grateful to Andrea Caranti for pointing it out.

A finite non-abelian group G is Dedekind if and only if G ' Q8 ×T ×O, where Q8 is the

quaternion group, T is an elementary 2-group, and O is an abelian group of odd order.
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Bijectivity of the Hopf–Galois correspondence
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Problem I: Fix the Galois group G

It is natural to ask whether the Hopf–Galois correspondence, which is only injective

in general, is actually bijective for a given Hopf–Galois structure.

In Lorenzo’s talk

Classifying Galois extensions with Childs’s property

last year at this conference, he fixed the Galois group G and posed the following:

Problem I

Classify the finite groups G such that for any Galois G -extension L/K , the Hopf–Galois

correspondence is bijective for any Hopf–Galois structure on L/K .

Note. By the canonical non-classical structure, clearly G must be Dedekind.

Theorem I (Stefanello & Trappeniers 2023)

Fix a finite group G that is going to be the Galois group. The following are equivalent:

i For any Galois G -extension L/K , the Hopf–Galois correspondence is bijective for

any Hopf–Galois structure on L/K .

ii The group G is cyclic and q - p − 1 for all prime divisors p, q of |G |.
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Problem II: Fix the type N of the Hopf–Galois structure

After Lorenzo’s talk, I asked him:

What if one fixes the type of the Hopf–Galois structure instead?

In other words, is it possible to solve the following:

Problem II

Classify the finite groups N such that for any Hopf–Galois structure H of type N on any

Galois extension L/K , the Hopf–Galois correspondence is bijective for H.

Note. By the canonical non-classical structure, clearly N must be Dedekind.

Theorem II (Stefanello & T. 2025)

Fix a finite group N that is going to be the type. The following are equivalent:

i For any Hopf–Galois structure H of type N on any Galois extension, the Hopf–Galois

correspondence for H is bijective.

ii The group N is either isomorphic to C2 or V4, or is cyclic of odd order and q - p − 1

for all prime divisors p, q of |N|.

The conditions on N are similar to but not quite the same as those of G .
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Comparison of the two results

The finite groups G such that for any Galois G -extension L/K , the

Hopf–Galois correspondence is bijective for any Hopf–Galois structure on L/K

cyclic groups of even order such that
q - p − 1 for all prime divisors p, q

cyclic groups of odd order such that
q - p − 1 for all prime divisors p, q

V4

C2

The finite groups N such that for any Hopf–Galois structure H of type N

on any Galois extension L/K , the Hopf–Galois correspondence for H is bijective

cyclic groups of even order such that
q - p − 1 for all prime divisors p, q

cyclic groups of odd order such that
q - p − 1 for all prime divisors p, q

V4

C2
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The key technique used in the proof
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Hopf–Galois structures and skew braces

Both of the theorems make use of the connection between Hopf–Galois structures

and skew braces in the proof.

Definition

A skew brace is a set A = (A,+, ◦) equipped with two binary operations such that

1 (A,+) is a group. (the additive group)

2 (A, ◦) is a group. (the circle/adjoint/multiplicative group)

3 The brace relation a ◦ (b + c) = (a ◦ b)− a+ (a ◦ c) holds for all a, b, c ∈ A.

Given any group (A, ◦), there are two obvious ways to define the + operation such

that (A,+, ◦) is a skew brace.

1 The same operation: a+ b = a ◦ b for all a, b ∈ A.

2 The opposite operation: a+ b = a ◦op b = b ◦ a for all a, b ∈ A.

Definition

A skew brace of the form (A, ◦, ◦) is said to be trivial.

A skew brace of the form (A, ◦op, ◦) is said to be almost trivial.
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Hopf–Galois structures and skew braces

For any finite groups G and N of the same order:

Hopf–Galois structures of type N

on a G -Galois extension

regular subgroups of Sym(G)

that are isomorphic to N

and normalized by λ(G)

regular subgroups of N o Aut(N)

that are isomorphic to G

the operations ◦ on N = (N,+)

for which (N,+, ◦) is a skew

brace and (N, ◦) ' G

one-to-one

Greither-Pareigis 1987

one-to-one

Guarnieri-Vendramin 2017

Byott 1996
Galois group! circle group

type! additive group

The connection between Hopf–Galois structures and skew braces was known.

It was slightly modified and improved by Stefanello & Trappeniers.
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Hopf–Galois structures and skew braces: the new connection

Theorem (Stefanello-Trappeniers 2023)

Let L/K be a finite Galois extension with Galois group G = (G , ◦).

There is a one-to-one correspondence between{
operations + on G such that

(G ,+, ◦) is a skew brace

}
−→ {Hopf–Galois structures on L/K}

+ 7−→ H+

that is explicitly defined by

H+ = (L[(G ,+)])(G ,◦) =

{∑
τ∈G

`ττ ∈ L[(G ,+)]

∣∣∣∣∣ σ(`τ ) = `γσ(τ) for all σ, τ ∈ G

}
.

Note: (G , ◦) acts on (G ,+) via the gamma map γ of (G ,+, ◦). The action of H+ on L is given by(∑
τ∈G

`ττ

)
· x =

∑
τ∈G

`ττ(x) for all x ∈ L.

In this case the type of H+ is the isomorphism class of the corresponding group (G ,+).
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Hopf–Galois structures and skew braces: the new connection

Theorem (Stefanello & Trappeniers 2023)

Let L/K be a finite Galois extension with Galois group G = (G , ◦).

Let + be an operation on G such that (G ,+, ◦) is a skew brace and let H+ denote the

corresponding Hopf–Galois structure on L/K . Then:

K

L

(G , ◦)

H+

LG ′ ∈ ΦH+

⇔ G ′ is a left ideal of (G ,+, ◦)
⇔ γσ(G ′) ⊆ G ′ for all σ ∈ G

Thus, the Hopf–Galois correspondence for H+ is bijective if and only if every subgroup G ′

of (G , ◦) is a left ideal of (G ,+, ◦).
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The trivial and almost trivial skew braces

Let L/K be a finite Galois extension with Galois group G = (G , ◦).

K

L
H◦

trivial skew brace
(G , ◦, ◦)

!

classical structure

H◦op

almost trivial skew brace
(G , ◦op, ◦)

!

canonical non-classical
structure

ΦH◦op 3 LG ′

⇔ G ′ is a left ideal of (G , ◦op, ◦)
⇔ γσ(G ′) ⊆ G ′ for all σ ∈ G

LG ′ ∈ ΦH◦

⇔ G ′ is a left ideal of (G , ◦, ◦)
⇔ γσ(G ′) ⊆ G ′ for all σ ∈ G

For the trivial skew brace, we have γσ(τ) = σ−1 ◦ (σ ◦ τ) = τ .

∴ LG ′ ∈ ΦH◦ for all subgroups G ′ of G . ΦH◦ is always bijective.

For the almost trivial skew brace, we have γσ(τ) = σ−1 ◦op (σ ◦ τ) = σ ◦ τ ◦ σ−1.

∴ LG ′ ∈ ΦH◦op if and only if G ′ is normal in G . ΦH◦op is bijective ⇔ G is Dedekind.
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Skew-brace-theoretic versions of the proposed problems

Problem I

Classify the finite groups G such that for any Galois G -extension L/K , the Hopf–Galois

correspondence is bijective for any Hopf–Galois structure on L/K .

Problem I: skew-brace-theoretic version

Classify the finite groups G = (G , ◦) such that for any group operation + on G making

(G ,+, ◦) into a skew brace, every subgroup of (G , ◦) is a left ideal of (G ,+, ◦).

Theorem I (Stefanello & Trappeniers 2023) was proven using this reduction.

Problem II

Classify the finite groups N such that for any Hopf–Galois structure H of type N on any

Galois extension L/K , the Hopf–Galois correspondence is bijective for H.

Problem II: skew-brace-theoretic version

Classify the finite groups N = (N,+) such that for any group operation ◦ on N making

(N,+, ◦) into a skew brace, every subgroup of (N, ◦) is a left ideal of (N,+, ◦).

Theorem II (Stefanello & T. 2025) was proved using the reduction.
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Outline of the proof of Theorem II
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A reduction lemma

Theorem II (Stefanello & T. 2025)

Fix a finite group N that is going to be the type. The following are equivalent:

i For any Hopf–Galois structure H of type N on any Galois extension, the Hopf–Galois

correspondence for H is bijective.

ii The group N is either isomorphic to C2 or V4, or is cyclic of odd order and q - p − 1

for all prime divisors p, q of |N|.

Theorem II: skew-brace-theoretic version (Stefanello & T. 2025)

Fix a finite group N = (N,+) that is going to be the type. The following are equivalent:

i For any operation ◦ on N making (N,+, ◦) into a skew brace, every subgroup of

(N, ◦) is a left ideal of (N,+, ◦).

ii The group N is either isomorphic to C2 or V4, or is cyclic of odd order and q - p − 1

for all prime divisors p, q of |N|.

Lemma

If M does not satisfy i○, then M ×M ′ does not satisfy i○ for all groups M ′.
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The implication i○ ⇒ ii○

Theorem II: skew-brace-theoretic version (Stefanello & T. 2025)

Fix a finite group N = (N,+) that is going to be the type. The following are equivalent:

i For any operation ◦ on N making (N,+, ◦) into a skew brace, every subgroup of

(N, ◦) is a left ideal of (N,+, ◦).

ii The group N is either isomorphic to C2 or V4, or is cyclic of odd order and q - p − 1

for all prime divisors p, q of |N|.

Recall that either N is abelian or N is a direct product of Q8 with an abelian group.

One can show that the following groups do not satisfy i○.

a Q8  abelian

b C2 × C2 × C2  C2 or V4 or not elementary 2-abelian

c C2n for any n ≥ 2  C2 or V4 or odd order

d Cpn × Cpm for any odd primes p and m, n  C2 or V4 or cyclic of odd order

e Cpn × Cqm for any primes p, q with q | p − 1 and m, n

It follows that N must satisfy ii○.
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The implication ii○ ⇒ i○

Theorem II: skew-brace-theoretic version (Stefanello & T. 2025)

Fix a finite group N = (N,+) that is going to be the type. The following are equivalent:

i For any operation ◦ on N making (N,+, ◦) into a skew brace, every subgroup of

(N, ◦) is a left ideal of (N,+, ◦).

ii The group N is either isomorphic to C2 or V4, or is cyclic of odd order and q - p − 1

for all prime divisors p, q of |N|.

The case N ' C2 is obvious.

The case N ' V4 can also be dealt with very easily.

The case N ' Cn with q - p − 1 for all prime divisors p, q of n:

a (N, ◦) is a C -group, i.e. the Sylow subgroups are all cyclic. (Rump 2019)

b (N, ◦) ' Cd o Ce for some gcd(d , e) = 1 (Murty & Murty 1984)

c (N, ◦) ' Cn ' (N,+) (the hypothesis on the prime divisors of n)

It then follows that N must satisfy i○. See Remark 2.9 of the paper for the details.
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The difference in the Klein four-group
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Comparison of the two results

The finite groups G such that for any Galois G -extension L/K , the

Hopf–Galois correspondence is bijective for any Hopf–Galois structure on L/K

cyclic groups of even order such that
q - p − 1 for all prime divisors p, q

cyclic groups of odd order such that
q - p − 1 for all prime divisors p, q

V4

C2

The finite groups N such that for any Hopf–Galois structure H of type N

on any Galois extension L/K , the Hopf–Galois correspondence for H is bijective

cyclic groups of even order such that
q - p − 1 for all prime divisors p, q

cyclic groups of odd order such that
q - p − 1 for all prime divisors p, q

V4

C2
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The two non-trivial skew braces of order four

First non-trivial skew brace: (A,+) ' V4 and (A, ◦) ' C4

(Z/2Z× Z/2Z,+, ◦) : ~x ◦ ~y =
[
x1+y1+x2y2

x2+y2

]
, γ~x(~y) =

[
1 x2
0 1

]
~y

There is only one non-trivial proper subgroup of (A, ◦):

{[ 0
0 ] , [ 1

0 ]}

This is a left ideal of (Z/2Z× Z/2Z,+, ◦).

Second non-trivial skew brace: (A,+) ' C4 and (A, ◦) ' V4

(Z/4Z,+, ◦) : x ◦ y = x + y + 2xy , γx(y) = (1 + 2x)y

There are three non-trivial proper subgroups of (A, ◦):

{0, 1}, {0, 2}, {0, 3}

Only {0, 2} is a left ideal of (Z/4Z,+, ◦).

Thus, we have to exclude V4 when we are fixing the Galois group.
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