A graph associated with finite skew braces

Work in progress with Arne Van Antwerpen

Silvia Properzi
April 18, 2023

VRIJE
UNIVERSITEIT BRUSSEL

NOTATIONS

A skew brace is a triple $(A,+, \circ)$, where $(A,+)$ and (A, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

If $(\boldsymbol{A},+)$ is abelian, we call \boldsymbol{A} a skew brace of abelian type. The λ-action is

$$
\lambda:(A, \circ) \rightarrow \operatorname{Aut}(A,+) \quad \lambda_{a}(b)=-a+a \circ b
$$

Let $b \in A$, the λ-orbit of b is $\Lambda(b)=\left\{\lambda_{a}(b): a \in A\right\}$ and the stabilizer of b is $\operatorname{Stab}(b)=\left\{a \in A: \lambda_{a}(b)=b\right\}$.

$$
\operatorname{Fix}(A)=\left\{b \in A: \lambda_{a}(b)=b \forall a \in A\right\}
$$

is the additive subgroup of the trivial λ-orbits.

DEFINITION

Definition (Bertram-Herzog-Mann)

For a finite group G, let $\Gamma(G)$ is the graph with vertices the non-trivial conjugacy classes of G and two vertices C_{1}, C_{2} are adjacent if $\operatorname{gcd}\left(\left|C_{1}\right|,\left|C_{2}\right|\right) \neq 1$.

DEFINITION

Definition (for skew braces)

For a finite skew brace A, let $\Gamma(A)$ is the graph with vertices the non-trivial λ-orbits of A and two vertices C_{1}, C_{2} are adjacent if $\operatorname{gcd}\left(\left|C_{1}\right|,\left|C_{2}\right|\right) \neq 1$.

Connection:
If (G, \cdot) is a finite group, then $\Gamma(G, \cdot, \cdot \circ p)=\Gamma(G)$: on the skew brace ($G, \cdot, \cdot{ }^{\circ}$), the λ-action is

$$
\lambda_{g}(h)=g^{-1} \cdot\left(h .{ }^{\mathrm{op}} g\right)=g^{-1} h g
$$

EXAMPLES

Let $(A,+, \circ)$ be a finite skew brace.

- $\Gamma(A)$ has no vertices if and only if $+=0$.
- If $|A|=p^{2}$, then $\Gamma(A)$ is empty or a complete graph with $p-1$ vertices.
- If $|A|=p q$, then $\Gamma(A)$ is completely determined by $|\operatorname{Fix}(A)|$.

$(A,+)$	$(n, m) \circ(s, t)$	$\|\operatorname{Fix}(A)\|$	$\Gamma(A)$
$\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	$(n+s, m+t)$	6	
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$\left(n+(-1)^{m} s, m+t\right)$	6	
$\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	$\left(n+(-1)^{m} s, m+t\right)$	2	$\bullet-\bullet$
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$\left((-1)^{t} n+(-1)^{m} s, m+t\right)$	3	\bullet
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$(n+s, m+t)$	2	$\bullet-\bullet$
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$\left((-1)^{t} n+s, m+t\right)$	1	$\bullet \bullet$

Table: Skew braces of size 6 [Acri-Bonatto].

PROPERTIES

Proposition

If A is a finite skew brace, then the number of connected components of $\Gamma(A)$ is

$$
n(\Gamma(A)) \leq 2
$$

Proposition

If A is a finite skew brace such that $n(\Gamma(A))=1$, then the diameter of $\Gamma(A)$ is

$$
d(\Gamma(A)) \leq 4
$$

TWO DISCONNECTED VETICES

Theorem

Let A be a finite skew brace. If $\Gamma(A)$ has exactly two disconnected vertices, then $A \cong\left(\mathcal{S}_{3}, \cdot, .{ }^{\circ \mathrm{P}}\right)$.

$(A,+)$	$(n, m) \circ(s, t)$	$\|\operatorname{Fix}(A)\|$	$\Gamma(A)$
$\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	$(n+s, m+t)$	6	
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$\left(n+(-1)^{m} s, m+t\right)$	6	
$\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	$\left(n+(-1)^{m} s, m+t\right)$	2	$\bullet-\bullet$
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$\left((-1)^{t} n+(-1)^{m} s, m+t\right)$	3	\bullet
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$(n+s, m+t)$	2	$\bullet-\bullet$
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$\left((-1)^{t} n+s, m+t\right)$	1	$\bullet \bullet$

Table: Skew braces of size 6 [Acri-Bonatto].

ONE VERTEX: ABELIAN TYPE

Theorem

Let A be a finite skew brace of abelian type such that $\Gamma(A)$ has only one vertex. Then A is isomorphic to one of the following skew braces.

- On $\mathbb{Z} / 4 \mathbb{Z}$, with multiplication $x \circ y=x+y+2 x y$.
- On $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, with multiplication

$$
\left(x_{1}, y_{1}\right) \circ\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}+y_{1} y_{2}, y_{1}+y_{2}\right)
$$

- On $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$, with multiplication

$$
\left(x_{1}, y_{1}\right) \circ\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}+y_{2} \sum_{i=1}^{y_{1}-1} i, y_{1}+y_{2}+2 y_{1} y_{2}\right) .
$$

ONE VERTEX: ABELIAN TYPE

Sketch of the proof:
$A=\operatorname{Fix}(A) \sqcup \Lambda(x)$ for some $x \in A$.

- $|\Lambda(x)|=|A| / 2=|\operatorname{Fix}(A)|$ and \mid ker $\lambda \mid=2$.
- $\operatorname{Fix}(A)$ is abelian (and A is left nilpotent).
- There is no decomposition $A=A_{1} \times A_{2}$.
- $|A|=2^{m}$
([Cedó-Smoktunowicz-Vendramin] decomposition).
- $|A| \leq 8$:
$-|A|=4 \Longleftrightarrow(A, \circ)$ is abelian.
- If $|A|>4$. Consider $\bar{A}=A / \operatorname{ker} \lambda$:

$$
\Gamma(\bar{A})=\bullet \text { and }(\bar{A}, \circ) \cong \operatorname{Fix}(A) \text { abelian } \Rightarrow|\bar{A}|=4 \text {. }
$$

ONE VERTEX: GENERAL CASE

Theorem

Let A be a finite skew brace. $\Gamma(A)$ has exactly one vertex if and only if A is isomorphic to a skew brace on the set $F \times \mathbb{Z} / 2 \mathbb{Z}$, with

$$
\begin{aligned}
\left(f_{1}, k_{1}\right)+\left(f_{2}, k_{2}\right) & =\left(f_{1}+(-1)^{k_{1}} f_{2}+k_{1} k_{2} y, k_{1}+k_{2}\right), \\
\left(f_{1}, k_{1}\right) \circ\left(f_{2}, k_{2}\right) & =\left(f_{1}+\psi\left(f_{1}, k_{1}, k_{2}\right)+(-1)^{k_{1}} f_{2}+k_{1} k_{2} y, k_{1}+k_{2}\right),
\end{aligned}
$$

where $F \neq\{0\}$ is an abelian group, $y \in F$ such that $2 y=0$, and $\psi: F \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \rightarrow F$ is a surjective map such that

$$
\psi\left(f_{1}, k_{1}, k_{2}\right)=\frac{1-(-1)^{k_{2}}}{2}\left(\phi\left(f_{1}\right)-\frac{1-(-1)^{k_{1}}}{2} z\right),
$$

where $\phi \in \operatorname{End}(F), z \in F, \phi(z)=\phi(y)-2 z$, and $\phi^{2}=-2 \phi$.

ONE VERTEX: GENERAL CASE

With these conditions there exists an abelian group G of odd order such that

$$
F \cong(\mathbb{Z} / 2 \mathbb{Z} / \times \mathbb{Z} / 2 \mathbb{Z}) \times G \text { and } \phi=\left(\alpha,-2 \text { id }_{G}\right) \text { with }|\operatorname{ker} \alpha|=2,
$$

or

$$
F \cong \mathbb{Z} / 2^{i} \mathbb{Z} \times G \text { and } \phi=-2 \mathrm{id}_{F}
$$

Corollary

The number of isomorphism classes of skew braces A with one-vertex graph $\Gamma(A)$ of size $n=2^{m} d$, for $\operatorname{gcd}(2, d)=1$ is

$$
\begin{cases}m \cdot A b(d) & \text { if } 0 \leq m \leq 3 \\ 2 \cdot A b(d) & \text { if } m \geq 4\end{cases}
$$

where $A b(d)$ is the number of abelian groups of order d.

- Can we characterize skew braces with a graph with two connected components?
(for groups in [Bertram-Herzog-Mann]: quasi-Frobenius with abelian kernel and complement)
- Is it true (as it is for groups, [Chillag-Herzog-Mann]) that in the connected case, $d(\Gamma(A)) \leq 3$?
- When does $d(\Gamma(A)) \leq 2$?

REFERENCES

E. Acri and M. Bonatto.

Skew braces of size pq.
Comm. Algebra, 48(5):1872-1881, 2020.
屢 E. A. Bertram, M. Herzog, and A. Mann.
On a graph related to conjugacy classes of groups.
Bull. London Math. Soc., 22(6):569-575, 1990.
围 F. Cedó, A. Smoktunowicz, and L. Vendramin.
Skew left braces of nilpotent type.
Proc. Lond. Math. Soc. (3), 118(6):1367-1392, 2019.
D. Chillag, M. Herzog, and A. Mann.

On the diameter of a graph related to conjugacy classes of groups.
Bulletin of The London Mathematical Society, 25:255-262, 1993.

