## A graph associated with finite skew braces

Work in progress with Arne Van Antwerpen

Silvia Properzi April 18, 2023



## NOTATIONS

A skew brace is a triple  $(A, +, \circ)$ , where (A, +) and  $(A, \circ)$  are groups and

$$a \circ (b + c) = a \circ b - a + a \circ c$$

If (A, +) is abelian, we call A a skew brace of abelian type. The  $\lambda$ -action is

$$\lambda: (\mathbf{A}, \circ) \to \operatorname{Aut}(\mathbf{A}, +) \qquad \lambda_{\mathbf{a}}(\mathbf{b}) = -\mathbf{a} + \mathbf{a} \circ \mathbf{b}.$$

Let  $b \in A$ , the  $\lambda$ -orbit of b is  $\Lambda(b) = \{\lambda_a(b) : a \in A\}$  and the stabilizer of b is  $Stab(b) = \{a \in A : \lambda_a(b) = b\}$ .

$$\mathsf{Fix}(\mathsf{A}) = \{ b \in \mathsf{A} \colon \lambda_{\mathsf{a}}(b) = b \; \forall \mathsf{a} \in \mathsf{A} \}$$

is the additive subgroup of the trivial  $\lambda$ -orbits.

## Definition (Bertram-Herzog-Mann)

For a finite group G, let  $\Gamma(G)$  is the graph with vertices the non-trivial conjugacy classes of G and two vertices  $C_1, C_2$  are adjacent if  $gcd(|C_1|, |C_2|) \neq 1$ .

## Definition (for skew braces)

For a finite skew brace A, let  $\Gamma(A)$  is the graph with vertices the non-trivial  $\lambda$ -orbits of A and two vertices  $C_1, C_2$  are adjacent if  $gcd(|C_1|, |C_2|) \neq 1$ .

#### Connection:

If  $(G, \cdot)$  is a finite group, then  $\Gamma(G, \cdot, \cdot^{\text{op}}) = \Gamma(G)$ : on the skew brace  $(G, \cdot, \cdot^{\text{op}})$ , the  $\lambda$ -action is

$$\lambda_g(h) = g^{-1} \cdot (h \cdot^{\operatorname{op}} g) = g^{-1} h g.$$

Let  $(A, +, \circ)$  be a finite skew brace.

- $\Gamma(A)$  has no vertices if and only if  $+ = \circ$ .
- If  $|A| = p^2$ , then  $\Gamma(A)$  is empty or a complete graph with p 1 vertices.
- If |A| = pq, then  $\Gamma(A)$  is completely determined by |Fix(A)|.



| (A,+)                                                     | $(n,m)\circ(s,t)$              | Fix(A) | Г(А) |
|-----------------------------------------------------------|--------------------------------|--------|------|
| $\mathbb{Z}/3\mathbb{Z}	imes\mathbb{Z}/2\mathbb{Z}$       | (n+s,m+t)                      | 6      |      |
| $\mathbb{Z}/3\mathbb{Z} times_{-1}\mathbb{Z}/2\mathbb{Z}$ | $(n+(-1)^m s,m+t)$             | 6      |      |
| $\mathbb{Z}/3\mathbb{Z}	imes\mathbb{Z}/2\mathbb{Z}$       | $(n+(-1)^m s,m+t)$             | 2      | ●-●  |
| $\mathbb{Z}/3\mathbb{Z} times_{-1}\mathbb{Z}/2\mathbb{Z}$ | $((-1)^t n + (-1)^m s, m + t)$ | 3      | •    |
| $\mathbb{Z}/3\mathbb{Z} times_{-1}\mathbb{Z}/2\mathbb{Z}$ | (n+s,m+t)                      | 2      | ●-●  |
| $\mathbb{Z}/3\mathbb{Z} times_{-1}\mathbb{Z}/2\mathbb{Z}$ | $((-1)^t n + s, m + t)$        | 1      | • •  |

Table: Skew braces of size 6 [Acri-Bonatto].



#### Proposition

# If A is a finite skew brace, then the number of connected components of $\Gamma(A)$ is

## $n(\Gamma(A)) \leq 2.$

#### Proposition

If A is a finite skew brace such that  $n(\Gamma(A)) = 1$ , then the diameter of  $\Gamma(A)$  is

 $d(\Gamma(A)) \leq 4.$ 

#### Theorem

Let **A** be a finite skew brace. If  $\Gamma(A)$  has exactly two disconnected vertices, then  $A \cong (S_3, \cdot, \cdot^{op})$ .

| (A, +)                                                    | $(n,m)\circ(s,t)$              | Fix(A) | Г(А) |
|-----------------------------------------------------------|--------------------------------|--------|------|
| $\mathbb{Z}/3\mathbb{Z}	imes\mathbb{Z}/2\mathbb{Z}$       | (n+s,m+t)                      | 6      |      |
| $\mathbb{Z}/3\mathbb{Z} times_{-1}\mathbb{Z}/2\mathbb{Z}$ | $(n+(-1)^m s,m+t)$             | 6      |      |
| $\mathbb{Z}/3\mathbb{Z}	imes\mathbb{Z}/2\mathbb{Z}$       | $(n+(-1)^m s,m+t)$             | 2      | ●-●  |
| $\mathbb{Z}/3\mathbb{Z} times_{-1}\mathbb{Z}/2\mathbb{Z}$ | $((-1)^t n + (-1)^m s, m + t)$ | 3      | •    |
| $\mathbb{Z}/3\mathbb{Z} times_{-1}\mathbb{Z}/2\mathbb{Z}$ | (n+s,m+t)                      | 2      | ●-●  |
| $\mathbb{Z}/3\mathbb{Z} times_{-1}\mathbb{Z}/2\mathbb{Z}$ | $((-1)^t n + s, m + t)$        | 1      | • •  |

Table: Skew braces of size 6 [Acri-Bonatto].

#### Theorem

Let A be a finite skew brace of abelian type such that  $\Gamma(A)$  has only one vertex. Then A is isomorphic to one of the following skew braces.

- On  $\mathbb{Z}/4\mathbb{Z}$ , with multiplication  $x \circ y = x + y + 2xy$ .
- On  $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ , with multiplication

 $(x_1, y_1) \circ (x_2, y_2) = (x_1 + x_2 + y_1y_2, y_1 + y_2).$ 

• On  $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ , with multiplication

$$(x_1, y_1) \circ (x_2, y_2) = \left(x_1 + x_2 + y_2 \sum_{i=1}^{y_1 - 1} i, y_1 + y_2 + 2y_1 y_2\right).$$

## ONE VERTEX: ABELIAN TYPE

#### Sketch of the proof:

- $A = Fix(A) \sqcup \Lambda(x)$  for some  $x \in A$ .
  - $|\Lambda(x)| = |A|/2 = |Fix(A)|$  and  $|\ker \lambda| = 2$ .
  - Fix(A) is abelian (and A is left nilpotent).
  - There is no decomposition  $A = A_1 \times A_2$ .
  - |A| = 2<sup>m</sup> ([Cedó-Smoktunowicz-Vendramin] decomposition).

 $\begin{aligned} |A| &\leq 8: \\ - & |A| = 4 \iff (A, \circ) \text{ is abelian.} \\ - & \text{If } |A| > 4. \text{ Consider } \overline{A} = A/ \text{ ker } \lambda: \\ & \Gamma(\overline{A}) = \bullet \text{ and } (\overline{A}, \circ) \cong \text{Fix}(A) \text{ abelian} \Rightarrow |\overline{A}| = 4. \end{aligned}$ 

#### Theorem

Let A be a finite skew brace.  $\Gamma(A)$  has exactly one vertex if and only if A is isomorphic to a skew brace on the set  $F \times \mathbb{Z}/2\mathbb{Z}$ , with

$$(f_1, k_1) + (f_2, k_2) = (f_1 + (-1)^{k_1} f_2 + k_1 k_2 y, k_1 + k_2), (f_1, k_1) \circ (f_2, k_2) = (f_1 + \psi(f_1, k_1, k_2) + (-1)^{k_1} f_2 + k_1 k_2 y, k_1 + k_2),$$

where  $F \neq \{0\}$  is an abelian group,  $y \in F$  such that 2y = 0, and  $\psi \colon F \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to F$  is a surjective map such that

$$\psi(f_1, k_1, k_2) = \frac{1 - (-1)^{k_2}}{2} \left( \phi(f_1) - \frac{1 - (-1)^{k_1}}{2} z \right),$$

where  $\phi \in \text{End}(F)$ ,  $z \in F$ ,  $\phi(z) = \phi(y) - 2z$ , and  $\phi^2 = -2\phi$ .

## ONE VERTEX: GENERAL CASE

With these conditions there exists an abelian group  ${\it G}$  of odd order such that

 $F \cong (\mathbb{Z}/2\mathbb{Z}/ \times \mathbb{Z}/2\mathbb{Z}) \times G$  and  $\phi = (\alpha, -2 \operatorname{id}_G)$  with  $|\ker \alpha| = 2$ ,

or

$$F \cong \mathbb{Z}/2^i\mathbb{Z} \times G$$
 and  $\phi = -2 \operatorname{id}_F$ .

#### Corollary

The number of isomorphism classes of skew braces A with one-vertex graph  $\Gamma(A)$  of size  $n = 2^m d$ , for gcd(2, d) = 1 is

$$egin{cases} m\cdot Ab(d) & ext{if } 0\leq m\leq 3,\ 2\cdot Ab(d) & ext{if } m\geq 4, \end{cases}$$

where Ab(d) is the number of abelian groups of order d.

- Can we characterize skew braces with a graph with two connected components? (for groups in [Bertram-Herzog-Mann]: quasi-Frobenius with abelian kernel and complement)
- Is it true (as it is for groups, [Chillag-Herzog-Mann]) that in the connected case,  $d(\Gamma(A)) \leq 3$ ?
- When does *d*(Γ(*A*)) ≤ 2?

## REFERENCES

- E. Acri and M. Bonatto. Skew braces of size pq. Comm. Algebra, 48(5):1872–1881, 2020.
- E. A. Bertram, M. Herzog, and A. Mann.
   On a graph related to conjugacy classes of groups.
   Bull. London Math. Soc., 22(6):569–575, 1990.
- F. Cedó, A. Smoktunowicz, and L. Vendramin.
   Skew left braces of nilpotent type.
   Proc. Lond. Math. Soc. (3), 118(6):1367–1392, 2019.

D. Chillag, M. Herzog, and A. Mann.
 On the diameter of a graph related to conjugacy classes of groups.
 Builtin of The London Mathematical Society 25:255, 262, 100

Bulletin of The London Mathematical Society, 25:255–262, 1993.