Canonical ideals in skew bracoids

Paul Truman

Keele University, UK

3rd August, 2023

Overview

Joint work with Isabel Martin-Lyons

Aim

Formulate skew bracoid analogues of important "canonical" ideals in skew braces. Begin to explore chains of ideals, pointing towards notions of nilpotency etc.

- Reminder of definition of skew bracoids and connection with Hopf-Galois theory
- γ -functions, ideals, associated subgroups
- Some canonical ideals: centre, socle, * operation
- Chains of ideals

Skew bracoids

Definition

A skew bracoid is a 5-tuple $(G, \cdot, N, \star, \odot)$ where (G, \cdot) and (N, \star) are groups and \odot is a transitive action of (G, \cdot) on N such that

$$g \odot (\eta \star \mu) = (g \odot \eta) \star (g \odot e_N)^{-1} \star (g \odot \mu)$$

for all $g \in G$ and $\eta, \mu \in N$.

- Where possible, write (G, N, \odot) , or even (G, N).
- Where possible, write $g \cdot h = gh$ and $\eta \star \mu = \eta \mu$.
- Every skew brace is a skew bracoid, with \odot and \cdot coinciding.
- If $\operatorname{Stab}_G(e_N) = \{e_G\}$ then (G, N) is essentially a skew brace.

An example

Example

- Let (A, \star, \cdot) be a skew brace and let B be a strong left ideal.
- B is a normal subgroup of (A, \star) , so $(A/B, \star)$ is a group.
- *B* is a subgroup of (*A*, ·), and the cosets of *B* with respect to · and * coincide.
- (A, ·) acts by left translation on the coset space A/B. Write ⊙ for this action.
- Then $(A, \cdot, A/B, \star, \odot)$ is a skew bracoid.

Question

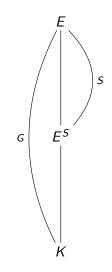
Does every skew bracoid occur in this way?

Connection with Hopf-Galois theory

Theorem

Let E/K be a finite Galois extension with Galois group (G, \cdot) , and let $S \leq G$. There are bijections between

- binary operations ★ on X = G/S such that (G, ·, X, ★, ⊙) is a skew bracoid;
- regular G-stable subgroups of Perm(X);
- Hopf-Galois structures on E^S/K .
- Nice theorems of Stefanello/Trapenniers generalize to this setting; not the focus of this talk.



Reduction and equivalence

Proposition

If (G, N, \odot) is a skew bracoid then the image of the permutation representation $\lambda_{\odot} : G \to \text{Perm}(N)$ is contained in $\text{Hol}(N) \cong N \rtimes \text{Aut}(N)$.

Definition

Two skew bracoids (G, N) and (G', N') are called *equivalent* if N = N'and $\lambda_{\odot}(G) = \lambda_{\odot'}(G') \subseteq Hol(N)$.

Proposition

Let (G, N) be a skew bracoid.

• Let $\overline{G} = G/\ker(\lambda_{\odot})$. Then (\overline{G}, N) is skew bracoid in which \overline{G} acts faithfully on N. This is called the *reduced form* of (G, N).

• Every skew bracoid is equivalent to its reduced form.

γ -functions

Proposition

Let (G, N) be a skew bracoid. Define $\gamma : G \rightarrow \text{Perm}(N)$ by

$${}^{\gamma({m g})}\eta=({m g}\odot {m e}_{m N})^{-1}\star({m g}\odot \eta)$$
 for all ${m g}\in {m G}$ and $\eta\in {m N}_{m N}$

Then

- γ is a group homomorphism;
- $\gamma(G) \subseteq \operatorname{Aut}(N)$.

The function γ is called the γ -function of the skew bracoid (G, N).

What if γ is trivial?

Proposition

Suppose that (G, N) is a skew bracoid such that $\gamma^{(g)}\eta = \eta$ for all $g \in G$ and all $\eta \in N$. Then (\overline{G}, N) is essentially a trivial skew brace.

Proof.

```
For all g \in G and \eta \in N we have
```

$$(g \odot e_N)^{-1}(g \odot \eta) = \eta$$

 $\Rightarrow (g \odot \eta) = (g \odot e_N)\eta.$

Hence $\ker(\lambda_{\odot}) = \operatorname{Stab}_{G}(e_{N})$, so $\operatorname{Stab}_{\overline{G}}(e_{N}) = \{\overline{e_{G}}\}$, so (\overline{G}, N) is essentially a skew brace. The γ -function of (\overline{G}, N) is given by $\gamma(\overline{g})\eta = \gamma(g)\eta = \eta$, so (\overline{G}, N) is essentially a trivial skew brace.

Ideals

Let (G, N) be a skew bracoid.

Definition

A left ideal of (G, N) is a subgroup M of N such that $\gamma^{(G)}M = M$. An ideal of (G, N) is a left ideal that is normal in N.

Proposition

If M is an ideal of (G, N) then (G, N/M) is a skew bracoid.

Definition

The associated subgroup of a left ideal M is

$$G_M = \{g \in G \mid g \odot \mu \in M \text{ for all } \mu \in M\} \leq G.$$

We call M an *enhanced* left ideal if G_M is normal in G.

Canonical ideals: characteristic subgroups

Proposition

Let (G, N) be a skew bracoid and suppose that M is a characteristic subgroup of N. Then N is an ideal of (G, N).

Proof.

Clearly *M* is normal in *N*, and since $\gamma(G) \subset Aut(N)$ we have $\gamma^{(G)}M = M$.

A natural example is M = Z(N), of course.

Question

Does the associated subgroup of Z(N) have a nice characterization?

Canonical ideals: socle

• If (A, \star, \cdot) is a skew brace then $Soc(A) = ker(\gamma) \cap Z(A, \star)$ is an ideal.

Proposition

If (G, N) is a skew bracoid then $Soc(G, N) = (ker(\gamma) \odot e_N) \cap Z(N)$ is an ideal of (G, N).

Proof.

For $k \in \ker(\gamma)$ and $h \in G$ we have

$$(k \odot e_N)(h \odot e_N) = (k \odot e_N)^{\gamma(k)}(h \odot e_N)$$

= $(k \odot e_N)(k \odot e_N)^{-1}(k \odot (h \odot e_N))$
= $((kh) \odot e_N).$

Hence $(\ker(\gamma) \odot e_N) \leq N$, and so $\operatorname{Soc}(G, N) \leq N$.

Canonical ideals: socle

Recall: $Soc(G, N) = (ker(\gamma) \odot e_N) \cap Z(N) \trianglelefteq N$. Remains to show that Soc(G, N) is $\gamma(G)$ -stable.

Proof continued...

Let $\mu \in \text{Soc}(G, N)$ and write $\mu = k \odot e_N$ with $k \in \text{ker}(\gamma)$. Let $g \in G$. Then $\gamma^{(g)} \mu \in Z(N)$ and

$$\begin{array}{rcl} {}^{(g)}\mu & = & (g \odot e_N)^{-1}(g \odot (k \odot e_N)) \\ & = & g \odot ((g^{-1} \odot e_N)(k \odot e_N)) \\ & = & g \odot ((k \odot e_N)(g^{-1} \odot e_N)) \\ & = & g \odot (kg^{-1} \odot e_N) \\ & = & gkg^{-1} \odot e_N \in \ker(\gamma) \odot e_N. \end{array}$$

Hence Soc(G, N) is an ideal of (G, N).

The * operation

• If (A, \star, \cdot) is a skew brace then $*: A \times A \rightarrow A$ is defined by

$$a * b = a^{-1} \star (a \cdot b) \star b^{-1} = {}^{\gamma(a)}(b) \star b^{-1}.$$

• A subgroup B of (A, \star) is a left ideal of A if and only if $A * B \subset B$.

Definition

Let (G, N) be a skew bracoid. Define $*: G \times N \to N$ by $g * \eta = {}^{\gamma(g)}(\eta)\eta^{-1}$.

Proposition

A subgroup M of N is a left ideal of (G, N) if and only if $G * M \subset M$.

Left series

• If A is a skew brace then let $A^1 = A$ and for $i \ge 1$ let $A^{i+1} = A * A^i = \langle a * b \mid a \in A, b \in A^i \rangle_*$

Then the A^i form a descending chain of left ideals of A.

Proposition

Let (G, N) be a skew bracoid. Let $N^1 = N$ and for $i \ge 1$ let

$$N^{i+1} = G * N^i = \langle g * \eta \mid g \in G, \eta \in N^i \rangle.$$

Then the N^i form a descending chain of left ideals of (G, N).

Proof.

We have $N^i \leq N$ for each i by definition. Suppose that N^i is a left ideal. We must show that $\gamma^{(h)}(g * \eta) \in N^{i+1}$ for all $g, h \in G$ and $\eta \in N^i$.

Left series

Recall: $N^{i+1} = G * N^i = \langle g * \eta | g \in G, \eta \in N^i \rangle$. We must show that $\gamma^{(h)}(g * \eta) \in N^{i+1}$ for all $g, h \in G$ and $\eta \in N^i$.

Proof continued...

We have:

$$\gamma^{(h)}(g * \eta) = \gamma^{(h)}(\gamma^{(g)}(\eta)\eta^{-1})$$

$$= \gamma^{(h)\gamma(g)}(\eta)\gamma^{(h)}(\eta^{-1})$$

$$= \gamma^{(hgh^{-1})}(\gamma^{(h)}(\eta))\gamma^{(h)}(\eta)^{-1}$$

$$= hgh^{-1}*(\gamma^{(h)}(\eta))$$

$$\in G * N^{i}.$$

Hence N^{i+1} is a left ideal of (G, N).

N^2 is special

If A is a skew brace then A² = A * A is an ideal and A/A² is a trivial skew brace.

Proposition

Let (G, N) be a skew bracoid. Then $N^2 = G * N$ is an ideal of (G, N).

Proof.

We need to show that $N^2 \trianglelefteq N$.

It is easy to show that for all $g \in G$ and $\mu, \eta \in N$ we have

$$g*(\mu\eta)=(g*\mu)\mu(g*\eta)\mu^{-1}.$$

Hence

$$\mu(g*\eta)\mu^{-1} = (g*\mu)^{-1}(g*(\mu\eta)) \in G*N.$$

N^2 is special

Proposition

Let (G, N) be a skew bracoid. Then the reduced form of $(G, N/N^2)$ is essentially a trivial skew brace.

Proof.

The γ -function of $(G, N/N^2)$ is given by $\gamma(g)(\eta N^2) = (\gamma(g)\eta)N^2$. We have

$$g * \eta = {}^{\gamma(g)}(\eta)\eta^{-1} \in \mathbb{N}^2 \leq \mathbb{N}$$

$$\Rightarrow (\eta^{-1}) {}^{\gamma(g)}(\eta) \in \mathbb{N}^2$$

$$\Rightarrow ({}^{\gamma(g)}\eta)\mathbb{N}^2 = \eta\mathbb{N}^2.$$

Thus the γ -function of $(G, N/N^2)$ is trivial, and so $(\overline{G}, N/N^2)$ is essentially a trivial skew brace.

Right series?

 If A is a skew brace then let A⁽¹⁾ = A and for i ≥ 1 let A⁽ⁱ⁺¹⁾ = A⁽ⁱ⁾ * A = ⟨b * a | b ∈ A⁽ⁱ⁾, a ∈ A⟩_{*} Then the A⁽ⁱ⁾ form a descending chain of ideals of A.

A possible route for generalizing this to a skew bracoid (G, N) might be:

- Let $N^{(1)} = N$.
- Let $N^{(2)} = G * N$.

This is an ideal; let $G_{(2)}$ denote its associated subgroup.

• Let
$$N^{(3)} = G_{(2)} * N$$
.

Assuming this is at least a left ideal, let $G_{(3)}$ denote its associated subgroup.

• etc.

In order to make sense of this, we need to understand more about the associated subgroups $G_{(i)}$.

- Could left/right series lead to notions of left/right nilpotency?
- What about solubility?
- What are the consequences of these notions
 - in Hopf-Galois theory?
 - in the construction/classification of skew bracoids?
 - for solutions of the Yang-Baxter equation?

Thank you for your attention.