

SCHUR-ZASSENHAUS ON SKEW BRACES Anna Rio 08-2023 UNIVERSITAT POLITÈCNICA **DE CATALUNYA**

BARCELONATECH

SCHUR-ZASSENHAUS

- Let G be a finite group and write |G| = ab where (a, b) = 1.
 If G has a normal subgroup G₁ of order a (normal Hall subgroup)
 then it has a subgroup G₂ of order b.
 The group G is the semidirect product G_{1 × G2} where G₂ acts on G₁ by conjugation
- ► Any two subgroups of order **b** in **G** are conjugate to each other

▶ |G| = 12p b=12 a=p prime p ≥ 7
Sylow ⇒ unique (normal) p-Sylow ⇒ G ≃ Z/pZ ⋊ G₂ G₂ of order 12
▶ If B is a brace of size 12p, the additive and the multiplicative groups are of this kind

.

"SCHUR-ZASSENHAUS" SKEW BRACES

- \succ (B, \cdot , \circ) skew left brace of size np, p odd prime
- > Hypothesis: all groups of size np have a normal subgroup of order p.
- > Additive group (B, \cdot) is isomorphic to $\mathbb{Z}/p\mathbb{Z} \rtimes E$
- > Multiplicative group (B, \circ) is isomorphic to $\mathbb{Z}/p\mathbb{Z} \rtimes F$
- ► E,F groups of order n

- \blacktriangleright Aim 1: show that E, F are the additive and multiplicative group of a brace of size n \blacktriangleright <u>Aim 2</u>: obtain all braces of size np from the family of braces of size n

SKEW BRACES DOUBLE SEMIDIRECT PRODUCT

► *A*, *B* skew left braces $\lambda_a(x) = a^{-1} \cdot a \circ x$ $\lambda_a \in Aut(A, \cdot)$ \succ σ: (B, ·) → Aut(A, ·, •) τ : (B, •) → Aut(A, ·, •) group homomorphisms > In $A \times B$ additive structure of the semidirect product $(A, \cdot) \rtimes_{\sigma} (B, \cdot)$

$$(a,b)\cdot(a',b')=(a\cdot\sigma)$$

$$(a,b)\circ (a',b')=(a\circ \tau($$

► Assume $\sigma(b_1 \circ b_2) = \tau(b_1)\sigma(b_2)\tau(b_1)^{-1}\sigma(b_1) = \sigma(b_2)^{\tau(b_1)}\sigma(b_1)$

and $\sigma(b_2)^{\tau(b_1)}$ commutes with every λ_a

> Then $(A \times B, \cdot, \circ)$ is a skew brace.

- $(b)(a'), b \cdot b')$
- multiplicative structure of the semidirect product $(A, \circ) \rtimes_{\tau} (B, \circ)$
 - $(b)(a'), b \circ b')$

EXAMPLE

> A trivial brace $\lambda_a = Id$ \succ σ : (B, ·) → Aut(A) τ : (B, •) → Aut(A) group homomorphisms > In $A \times B$ additive structure of the semidirect product $(A, \cdot) \rtimes_{\sigma} (B, \cdot)$ $(a,b) \cdot (a',b') = (a \sigma(b)(a'), b \cdot b')$

$$(a,b) \circ (a',b') = (a \tau(b))$$

► If Aut(A) is abelian $\tau(b_1)\sigma(b_2)\tau(b_1)^{-1}\sigma(b_1) = \sigma(b_2)\sigma(b_1) = \sigma(b_1)\sigma(b_2)$

and $\sigma(b_2)^{\tau(b_1)} = \sigma(b_2)$ commutes with every λ_a

► If $\sigma(b_1 \circ b_2) = \sigma(b_1)\sigma(b_2)$ then $(A \times B, \cdot, \circ)$ is a skew brace.

- multiplicative structure of the semidirect product $(A, \circ) \rtimes_{\tau} (B, \circ)$ $(a'), b \circ b'$

SIZE NP

► A trivial brace \mathbb{Z}_p Aut(A) = \mathbb{Z}_p^* is abelian \succ (B, \cdot , \circ) skew brace of size n ► $\sigma: (B, \cdot, \circ) \to \mathbb{Z}_p^*$ brace homomorphism ► $\tau: (B, \circ) \to \mathbb{Z}_p^*$ group homomorphism > There is a skew brace with additive structure $\mathbb{Z}_p \rtimes_{\sigma}(B, \cdot)$ and multiplicative structure $\mathbb{Z}_p^* \rtimes_{\tau} (B, \circ)$

 \blacktriangleright From braces of size n, we can construct braces of size np All? How many?

ALL?

► Proposition (B_{np}, \cdot, \circ) a skew brace such that $(B_{np}, \cdot) = N_p N_1$ and $(B_{np}, \circ) = G_p G_1$ Then (N_1, \cdot) , (G_1, \circ) are the additive and multiplicative structures of a brace B_n and $\sigma: N_1 \to \operatorname{Aut}(N_p)$ is a brace morphism

- ► Brace condition $x \circ (y \cdot z) = (x \circ y) \cdot x^{-1} \cdot (x \circ y)$ ▶ ...
- $\succ (m + \tau(a)(n + \sigma(b)r), a \circ b \cdot c) = (m + \tau(a)n + \sigma(a \circ b)\sigma(a^{-1})\tau(a)r, a \circ b \cdot a^{-1} \cdot a \circ c)$
- \blacktriangleright Equality of second components gives brace B_n
- \blacktriangleright Equality of first components gives σ brace morphism

 $\blacktriangleright \text{ Remark: } G_1 = \{(a, \lambda_a) \mid a \in N_1\} \quad a \circ b = a\lambda_a(b) \quad \sigma(a \circ b) = \sigma(a)\sigma(b) \iff \sigma\lambda_a = \sigma \quad \forall a$

HOW MANY?

 \succ (B_n, \cdot, \circ) brace size n $\sigma: (B_n, \cdot, \circ)$ -► In $\mathbb{Z}_p \times B_n$ two brace structures $\succ (m, a) \cdot (n, b) = (m + \sigma(a)n, a \cdot b)$ $(m,a) \circ (n,b) = \begin{cases} (m+\tau(a)n, \ a \circ b) \\ (\sigma(b)m+\tau(a)\sigma(a)n, \ a \circ b) \end{cases}$

 $\lambda_{y}(y) = x^{-1} \cdot (x \circ y) = (-\sigma(a^{-1})m, a^{-1}) \cdot (m, a)$

 (x, λ_x) in the <u>holomorph</u>

$$\rightarrow \mathbb{Z}_p^* \qquad \tau: (B_n, \circ) \rightarrow \mathbb{Z}_p^*$$

$$\mathbf{a}) \circ (\mathbf{n}, \mathbf{b}) = \begin{cases} (\sigma(a^{-1})\tau(a)n, \lambda_a(b)) \\ (\tau(a)n - \sigma(a^{-1})m + \sigma(a^{-1})\sigma(b)m, \lambda_a(b)) \end{cases}$$

CLASSIFY AND COUNT: HOLOMORPH REFORMULATION

- > Aim: Regular subgroups of $Hol(N) = N \rtimes Aut(N)$
- > Automorphisms semidirect product $N = \mathbb{Z}_p \rtimes_{\sigma} E$ (following Curran, 2008)

$$M = \begin{pmatrix} k & \gamma \\ 0 & \lambda \end{pmatrix} \quad k \in \mathbb{Z}_p^* \quad \lambda \in \operatorname{Aut}(E) \text{ such that } \sigma \lambda = \sigma \quad \gamma : E \to \mathbb{Z}_p \text{ 1-cocycle}$$

$$Action \text{ on } N \qquad \begin{pmatrix} k & \gamma \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} m \\ a \end{pmatrix} = \begin{pmatrix} km + \gamma(a) \\ \lambda(a) \end{pmatrix}$$

- with the coboundaries $\gamma_i(a) = i \sigma(a)i$, $i \in \mathbb{Z}_p$ (trivial σ , get X)
- under the action of Aut(E) on $Hom(E, \mathbb{Z}_p^*)$

Schur Zassenhaus: subgroups of order n are conjugates of E by elements in \mathbb{Z}_p leaves us

► Order of Aut(N) = p(p-1)s $s = #\{\lambda \in Aut(E) : \sigma \lambda = \sigma\} = #\Sigma_{\sigma}$ stabilizer of σ (orbit gives $\mathbb{Z}_p \rtimes_{\sigma'} E \simeq N$)

CLASSIFY AND COUNT: HOLOMORPH REFORMULATION

 $\operatorname{Hol}(N) = \operatorname{Hol}(\mathbb{Z}_p \rtimes_{\sigma} E) = \left\{ \begin{bmatrix} m \\ a \end{bmatrix}, M \end{bmatrix} \qquad m \in \mathbb{Z}_p, \ a \in E, \ M \in \operatorname{Aut}(\mathbb{Z}_p \rtimes_{\sigma} E) \right\}$

 $[u, M_{\mu}][v, M_{\nu}] = [u \cdot M_{\mu}v, M_{\mu}M_{\nu}]$

Brace of size n data

- \succ (*E*, \cdot) group
- $\succ F = \{(a, \lambda_a) : a \in E\}$ regular subgroup of Hol(E)
- ► $\tau \in \text{Hom}(F, \mathbb{Z}_p^*)$

 $\sigma \in \text{Hom}(E, \mathbb{Z}_p^*)$ such that $\sigma \lambda_a = \sigma$ for all $a \in E$

CLASSIFY AND COUNT: HOLOMORPH REFORMULATION

$$\operatorname{Hol}(\mathbb{Z}_p \rtimes_{\sigma} E) = \left\{ \begin{bmatrix} m \\ a \end{bmatrix}, M \end{bmatrix} \qquad m \in \mathbb{Z}_p$$

► Regular subgroups $\{(x, \lambda_x) : x \in N\}$

$$G(\sigma,\tau) = \begin{cases} \left[\binom{m}{a}, \binom{\sigma(a)^{-1}\tau(a,\lambda_a)}{0}, \binom{\sigma(a)^{-1}\tau(a,\lambda_a)}{0}, \binom{\sigma(a)^{-1}\tau(a,\lambda_a)}{0} \right] \end{cases}$$

$$G(\sigma, \tau)' = \begin{cases} \binom{m}{a}, \binom{\tau(a, \lambda_a) & \gamma_{-\sigma(a^{-1})n} \\ 0 & \lambda_a \end{cases}$$

 $\in \mathbb{Z}_p, a \in E, M \in \operatorname{Aut}(\mathbb{Z}_p \rtimes_{\sigma} E)$

 $\begin{pmatrix} 0 \\ \lambda_{a} \end{pmatrix} = m \in \mathbb{Z}_{p}, a \in E$

)^m] $m \in \mathbb{Z}_p, a \in E$

.

CLASSIFY AND COUNT

- ► Are regular subgroups of $\operatorname{Hol}(\mathbb{Z}_p \rtimes_{\sigma} E)$ isomorphic to $\mathbb{Z}_p \rtimes_{\tau} F$
- ► We have $G(1,\tau) = G(1,\tau)'$ for any τ
- ► For a nontrivial σ , $G(\sigma, \tau)$ and $G(\sigma, \tau)'$ are not conjugate in Hol $(\mathbb{Z}_p \rtimes_{\sigma} E)$
- ► <u>Theorem</u>: Any regular subgroup of Hol(N) isomorphic to $\mathbb{Z}_p \rtimes_{\tau} F$ is conjugate to $G(\sigma, \tau)$ or $G(\sigma, \tau)'$ by an element of Aut(N)
 - ► Regularity
 - $\nu_{k,l}: \mathbb{Z}_p \longrightarrow \operatorname{Hol}(N) \qquad \Psi_{\alpha}: F \longrightarrow \operatorname{Hol}(N)$ $m \rightarrow \begin{bmatrix} \binom{m}{1}, \binom{1}{\gamma_{lm}} \end{bmatrix} \qquad (a, \lambda_a) \rightarrow \begin{bmatrix} \binom{0}{a}, \binom{\alpha(a) & 0}{0 & \lambda_a} \end{bmatrix}$
 - Conjugacy classes of images by elements in Aut(N)
 - ► Isomorphic to $\mathbb{Z}_p \rtimes_{\tau} F$

CLASSIFY AND COUNT

► F, F' not conjugate in Hol(E), images by Ψ_{α} not conjugate in Hol(N)

Count different brace structures: determine conjugation orbits in the families $\{G(\sigma, \tau)\}_{\sigma, \tau}$ and $\{G(\sigma, \tau)'\}_{\sigma, \tau}$

- > σ up to brace automorphisms of (B_n, \cdot, \circ) ,
- $\succ \tau$ up to brace automorphisms of (B_n, \circ)

(isomorphism classes of braces structures)

ALGORITHM

- Goal: determine all skew braces of size np from skew braces of size n
- Step 0 (Precomputation) Determine isomorphism classes of groups E of order n and the number of braces of size n of each type (E,F), F in a system of representatives for conjugacy classes (by Aut(E)) of regular subgroups of Hol(E)
- For every E compute stabilisers Σ_{σ} for $action(g, \sigma) \rightarrow \sigma g$ of Aut(E) on $Hom(E, \mathbb{Z}_{p}^{*})$
- Fix a pair (E,F) as brace B_n
- > Output: number of braces of size np having additive group isomorphic to $\mathbb{Z}_p \rtimes E$ and multiplicative group isomorphic to $\mathbb{Z}_p \rtimes F$

ALGORITHM

- ► <u>Step 1</u> Determine Hom $(B_n, \mathbb{Z}_p^*) = \left\{ \sigma \in H \right\}$ ► <u>Step 2</u> Determine $Aut(B_n) = \begin{cases} g \in Aut(E) \end{cases}$ Φ_{g} inner automorphism of Hol(E) acting $\Phi_{g}(x, y)$ ▶ <u>Step 3</u> Compute orbits of the action $(g, \sigma) \rightarrow \sigma g$ of Aut (B_n) on Hom (B_n, \mathbb{Z}_n^*) braces. Number of additive structures is the number of orbits
- action $(g, \tau) \to \tau \Phi_{g}$ of $(\operatorname{Aut}(B_{n}) \cap \Sigma_{\sigma})$ on $\operatorname{Hom}(F, \mathbb{Z}_{p}^{*})$

The number of multiplicative structures is twice the number of orbits except for trivial σ , when we get a single one

$$Hom(E, \mathbb{Z}_p^*): \pi_2(F) \subseteq \Sigma_\sigma$$
 ($\sigma\lambda_a = \sigma$)
: $\Phi_g(F) = F$ }
: $\lambda) = (gx, g\lambda g^{-1})$

The orbit of $\sigma = 1$, direct product, has a single element. The remaining orbits will give rise to two different

 \blacktriangleright Step 4 For each σ in a system of representatives of the above orbits, compute orbits of the

NUMBER OF BRACES OF SIZE NP

► The number of additive structures is

The total amount of braces of size np is

$$\sum_{(B_n,\cdot)} \left(\frac{1}{|A_1|} \sum_{\tau \in H} |\operatorname{Stab}_{A_1}(\tau)| + 2 \sum_{\sigma \neq \sigma} |A_1| \right) = 0$$

 $A_{\sigma} = \operatorname{Aut}(B_n) \cap \operatorname{Stab}_{\operatorname{Aut}(B_n,\cdot)}(\sigma)$

► Using Burnside formula, can be given in terms of fixed points of actions

 $\sum_{\substack{\tau \neq 1}} \frac{1}{|A_{\sigma}|} \sum_{\tau \in H} |\operatorname{Stab}_{A_{\sigma}}(\tau)|$

H=Hom($(B_n, \circ), \mathbb{Z}_p^*$), $\sigma \in \text{Hom}(B_n, \mathbb{Z}_p^*)$ runs over a system of representatives for additive structures and

N=12 PRECOMPUTATION

$E \backslash F$	C_{12}	$C_6 \times C_2$	A_4	$D_{2 \cdot 6}$	Dic ₁₂
C_{12}	1	1	0	2	1
$C_6 \times C_2$	1	1	1	1	1
A_4	0	2	4	0	2
$D_{2 \cdot 6}$ Dic ₁₂	2	2	0	4	2
Dic ₁₂	2	2	0	4	2

Braces of size 12

N=12 PRECOMPUTATION

 $\bullet \mathbf{E} = \mathbf{C}_{12} \quad \text{Aut} \, \mathbf{E} = \langle 5 \rangle \times \langle 7 \rangle = \mathbb{Z}_{12}^* \quad \text{Hom}(\mathbf{E}, \mathbb{Z}_p^*) \simeq \langle \zeta_D \rangle \quad D = \gcd(12, p-1) \quad \sigma(\mathbf{c}) = \zeta_d^j$

$_{k}$	d	$\varphi(d)$	Orbit of $\sigma = (d, j \mod d)$	Σ_{σ}
12	1	1	1	$\operatorname{Aut}(E)$
6	2	1	1	$\operatorname{Aut}(E)$
4	3	2	$1 \xrightarrow{5} 2$	$\{1,7\}$
3	4	2	$1 \xrightarrow{7} 3$	$\{1, 5\}$
2	6	2	$1 \xrightarrow{5} 5$	$\{1,7\}$
1	12	4	$1 \xrightarrow{5} 5 \xrightarrow{11} 7 \xrightarrow{5} 11$	{1}

 $\bullet \mathbf{E} = \mathbf{C}_6 \times \mathbf{C}_2 = \langle a \rangle \times \langle b \rangle \quad \text{Aut} \, \mathbf{E} = D_{2 \cdot 6} = \langle g_1, g_2 \rangle \quad \text{Hom}(\mathbf{E}, \mathbb{Z}_p^*) \simeq \langle \zeta_D \rangle \times \{\pm 1\} \quad D = \gcd(6, p-1)$

$_{k}$	d	Orbit of $\sigma = (j \mod d, i \mod 2)$	Σ_{σ}			
		(1,0)	$\operatorname{Aut}(E)$			
6	2	$(1,0) \xrightarrow{g_2} (0,1) \xrightarrow{g_2} (1,1)$	$g_2^m \langle g_2^3, g_1 \rangle g_2^{-m}$	$=\langle g_2^3,\ g_2^{2m}g_1 angle$	m=0,1,2	$C_2 \times C_2$
4	3	$(1,0) \xrightarrow{g_2} (2,0)$	$g_2^m \langle g_2^2, g_1 \rangle g_2^{-m}$	$=\langle g_2^2,\ g_2^{2m}g_1 angle$	m = 0, 1	S_3
2	6	$(1,0) \xrightarrow{g_2} (2,1) \xrightarrow{g_2} (1,1) \xrightarrow{g_2} (5,0) \xrightarrow{g_2} (4,1) \xrightarrow{g_2} (5,1)$	$g_2^m \langle g_1 \rangle g_2^{-m}$	$= \langle \ g_2^{2m} g_1 \rangle$	m=0,1,2	C_2

The number of isomorphism classes of semidirect products $\mathbb{Z}_p \rtimes C_{12}$ is equal to the number of divisors of gcd(12,p-1)

N=12 PRECOMPUTATION

 $\bullet E = A_4$ Aut $E = S_4$ Hom $(E, \mathbb{Z}_p^*) \simeq \langle \zeta_3 \rangle$

 $\bullet E = D_{2\cdot 6}$ Aut $E = D_{2\cdot 6}$ Hom $(E, \mathbb{Z}_p^*) \simeq$

 $\bullet E = Dic_{12}$ Aut $E = D_{2\cdot 6}$ Hom $(E, \mathbb{Z}_p^*) \simeq$

$$\langle \zeta_D \rangle \quad D = \gcd(4, p - 1)$$

		Orbit of $\sigma = (d, j)$	Stabiliser Σ_{σ}
12	1	(1, 1)	$\operatorname{Aut}(E)$
6	2	(2, 1)	$\operatorname{Aut}(E)$ $\operatorname{Aut}(E)$
3	4	$(1,1)$ $(2,1)$ $(4,1) \xrightarrow{g_1}{g_2^3} (4,3)$	$\langle g_2^2, g_1 g_2 \rangle \simeq D_{2\cdot 3}$
		$g_{\tilde{2}}$	

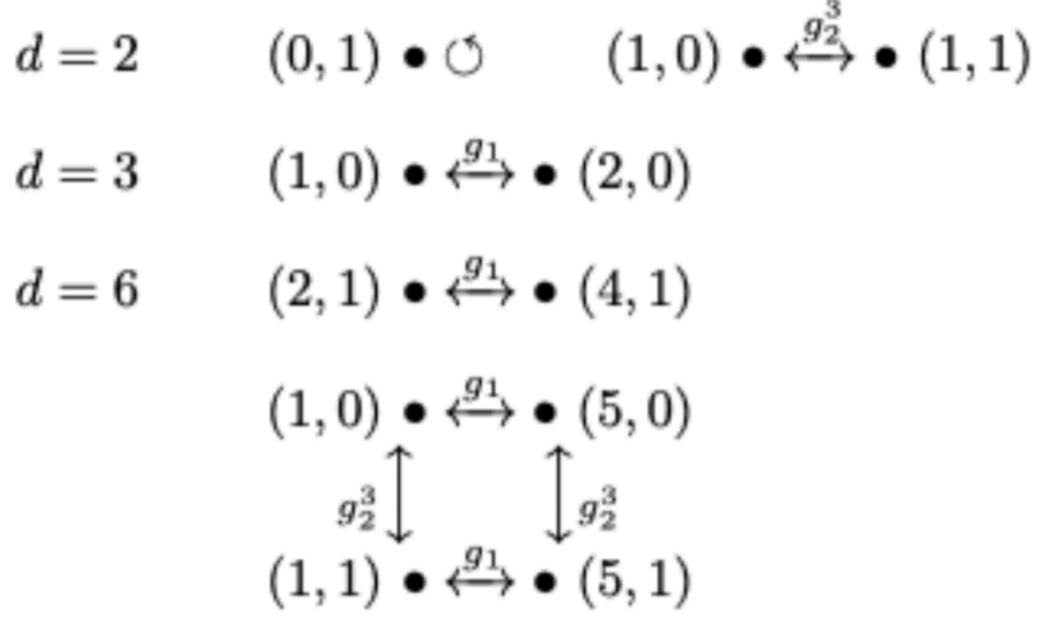
12P EXAMPLE $E = D_{12}$ $F = C_6 \times C_2$

 \succ E= $\langle r, s \rangle$ Aut $E = D_{2.6} = \langle g_1, g_2 \rangle$ $\Sigma_{\sigma} = \text{Aut}(E)$ or $\langle g_1, g_2^2 \rangle$

- > 2 regular subgroups in Hol(E) isomorphic to $C_6 \times C_2$ $F_1 = \langle a_1 = (r, Id), b_1 = (s, g_1) \rangle$ $\pi_2 = \langle g_1 \rangle \subset \Sigma_{\sigma}$ $F_2 = \langle a_2 = (r, g_2^4), b_2 = (s, Id) \rangle$ $\pi_2 = \langle g_2^4 \rangle \subset \Sigma_{\sigma}$ \succ g_2^3 brace automorphism in both cases \implies orbits give 3 additive structures $\sigma = (\sigma(r), \sigma(s)) = (1, 1), (1, -1), (-1, 1)$
- ► In both cases $Aut(B) = \{g \in Aut(E) :$
 - $\Phi_{g_1}(a) = a^5 \quad \Phi_{g_1}(b) = b \quad \Phi_{g_2}(a) = a \quad \Phi_{g_2}(b) = a^3 b$

$$\Phi_g(F) = F \} = \langle g_2^3, g_1 \rangle$$

12P EXAMPLE $E=D_{12}$ $F=C_6 \times C_2$ ► Action of Aut(B)= $\langle g_2^3, g_1 \rangle$ on Hom(F, $\succ \tau = (j \mod d, i \mod 2)$



2	
∕∕*)	(same for both F)
\mathbb{Z}_p^*	(Same for Doth F)

But action was restricted to $\operatorname{Aut}(B) \cap \Sigma_{\sigma}$

For σ of order 6 with dihedral kernel $g_2^3 \notin \Sigma_{\sigma}$ and in first and last case orbits split.

.

12P EXAMPLE $E=D_{12}$ $F=C_6 \times C_2$

for a kernel of size k to occur)

$N \backslash G$	$\mathbf{Z}_p \times (C_6 \times C_2)$	$\mathbf{Z}_p \rtimes_6 (C_6 \times C_2)$	$\mathbf{Z}_p \rtimes_4 (C_6 \times C_2)$	$\mathbf{Z}_p \rtimes_2 (C_6 \times C_2)$	
$\mathbf{Z}_p \times D_{2 \cdot 6}$	2	4	2	4	2#orbits
$\mathbf{Z}_p \rtimes_6^c D_{2 \cdot 6}$	4	8	4	8	4#orbits
$\mathbf{Z}_p \rtimes_6^d D_{2 \cdot 6}$	4	12	4	12	1//0/01013

► The number of braces with additive group $N = \mathbb{Z}_p \rtimes D_{12}$ and multiplicative group $G = \mathbb{Z}_p \rtimes (C_6 \times C_2)$ is as shown in the following table (we need $p \equiv 1 \mod 12/k$

TOTAL NUMBERS

• If $p \equiv 11 \pmod{12}$

	C_{12}	$C_6 \times C_2$	A_4	$D_{2\cdot 6}$	Dic_{12}	
C_{12}	6	9	0	21	6	
$C_6 imes C_2$	6	8	1	17	6	
A_4	0	4	4	0	4	
$D_{2\cdot 6}$	12	34	0	90	12	
Dic_{12}	12	18	0	42	12	
	36	73	5	170	40	324

If
$$p \equiv 5 \pmod{12}$$

	C_{12}	$C_6 \times C_2$	A_4	$D_{2\cdot 6}$	Dic_{12}	
C_{12}	17	9	0	21	17	
$C_6 \times C_2$	9	8	1	17	9	
A_4	0	4	4	0	6	
$D_{2\cdot 6}$	18	34	0	90	18	
Dic_{12}	34	18	0	42	34	
	78	73	5	170	84	410

• If $p \equiv 7 \pmod{12}$

	C_{12}	$C_6 \times C_2$	A_4	$D_{2\cdot 6}$	Dic_{12}	
C_{12}	36	54	0	21	6	
$C_6 imes C_2$	36	46	8	17	6	
A_4	0	32	32	0	4	
$D_{2\cdot 6}$	24	68	0	90	12	
Dic_{12}	24	36	0	42	12	
	120	236	40	170	40	606

If
$$p \equiv 1 \pmod{12}$$

	C_{12}	$C_6 \times C_2$	A_4	$D_{2\cdot 6}$	Dic_{12}	
C_{12}	94	54	0	21	17	
$C_6 \times C_2$	54	46	8	17	9	
A_4	0	32	32	0	6	
$D_{2\cdot 6}$	36	68	0	90	18	
Dic_{12}	68	36	0	42	34	
	252	236	40	170	84	782

We prove the conjecture Bardakov, Neshchadim and Yadav

$$s(12p) = \begin{cases} 324 & \text{if } p \\ 410 & \text{if} \\ 606 & \text{if} \\ 782 & \text{if} \end{cases}$$

T. Crespo, D. Gil-Muñoz, A. Rio, M. Vela, Double semidirect products and skew left braces of size *np* (submitted)

- $p \equiv 11 \pmod{12}$,
- $p \equiv 5 \pmod{12}$,
- $p \equiv 7 \pmod{12}$,
- $p \equiv 1 \pmod{12}$.