Bracoid Webs An Example

Structures

Next Steps

Skew bracoid webs arising from abelian maps

Alan Koch

Agnes Scott College

August 3, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

7
Background
Bracoid Web
An Example
Hopf-Galois
Structures

Joint work with

Paul J. Truman

Background

Bracoid Webs

An Example Hopf-Galois

Next Steps

2 Bracoid Webs

3 An Example

4 Hopf-Galois Structures

5 Next Steps

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Bracoids

Alan Koch

Background

Bracoid Webs

An Example

Hopf-Galois Structures

Next Steps

Recall: a skew left bracoid (hereafter, bracoid) is a quintuple $(G, \cdot, N, \star, \odot)$ such that:

- (1) (G, \cdot) and (N, \star) are groups;
- 2 *G* acts on *N* via $(g, \eta) \mapsto g \odot \eta$, $g \in G, \eta \in N$; and
- 3 the following bracoid relation holds:

$$g \odot (\eta \star \pi) = (g \odot \eta) \star (g \odot 1_N)^{-1} \star (g \odot \pi), \ g \in G, \ \eta, \pi \in N.$$

Conventions:

- Write (G, N) when operations are understood.
- Write gh for $g \cdot h$.
- Write ()⁻¹ for the inverse in G and N.

Background

Bracoid Webs

An Example

Hopf-Galoi Structures

Next Steps

$$g \odot (\eta \star \pi) = (g \odot \eta) \star (g \odot 1_N)^{-1} \star (g \odot \pi)$$

Examples

1 A skew left brace (B, \circ, \cdot) is a bracoid: $G = (B, \cdot), N = (B, \circ)$ and $a \odot b = a \cdot b$. Note that (B, \circ) is the "additive group".

2 Let $G = S_3$, $N = C_3 = \langle \eta \rangle$. Define \odot by

$$\begin{array}{c|c} g & g \odot \eta^i \\ \iota & \eta^i \\ (12) & \eta^{-i} \\ (13) & \eta^{1-i} \\ (23) & \eta^{2-i} \\ (123) & \eta^{i+1} \\ (132) & \eta^{i+2} \end{array}$$

(ロ) (同) (三) (三) (三) (○) (○)

Then (S_3, C_3) is a bracoid.

Background

Bracoid Webs An Example Hopf-Galois Structures

Next Steps

Abelian maps and braces

Let $G = (G, \cdot)$ be a group, usually taken to be nonabelian.

We say $\psi \in \text{End}(G)$ is an abelian map if $\psi(G)$ is abelian.

Denote the set of abelian maps on G by Ab(G).

 $\psi \in Ab(G)$ gives rise to a biskew brace (G, \circ, \cdot) , where the new operation is given by

$$g \circ h = g\psi(g^{-1})h\psi(g), \ g, h \in G.$$

Note that $\psi_1, \psi_2 \in Ab(G)$ give the same binary operation iff $\psi_1(g)\psi_2(g)^{-1} \in Z(G)$ for all $g \in G$.

Background Bracoid Web An Example

Structures

Next Steps

$g \circ h = g\psi(g^{-1})h\psi(g)$

Note, for example, that the trivial map yields the trivial brace.

While (G, \circ) is not necessarily isomorphic to (G, \cdot) , there is a homomorphism $\phi : (G, \circ) \to (G, \cdot)$ given by $\phi(g) = g\psi(g^{-1})$.

 ϕ is an isomorphism if and only if $\psi(g) \neq g$ for all $g \neq 1_G$.

This ϕ , which will always be implicitly dependent on ψ , will be important throughout this talk.

Abelian maps and brace blocks

Background

Bracoid Webs An Example Hopf-Galois Structures

Next Steps

A brace block is a set *G* together with a family of binary operations $\{\circ_i : i \in \mathcal{I}\}$ (where \mathcal{I} is some index set) such that (G, \circ_i, \circ_i) is a (biskew) brace for all $i, j \in \mathcal{I}$.

Let $\psi \in Ab(G)$, and for each $n \ge 0$ define $\psi_n : G \to G$ by $\psi_n(g) = \phi^n(g)^{-1}g$.

Note $\psi_0 = \text{id}$ and $\psi_1 = \psi$.

Generally, $\psi_n \in Ab(G)$, allowing us to create a group (G, \circ_n) with

$$g\circ_n h=g\psi_n(g^{-1})h\psi_n(g).$$

Can show: $(G, \{\circ_n : n \ge 0\})$ is a brace block.

Background Bracoid Webs An Example Hopf-Galois Structures

Abelian maps and bracoids

We can also get non-brace bracoids from an abelian map. Let $\psi \in Ab(G)$ and construct the brace as above.

Recall $\phi : (G, \circ) \to (G, \cdot), \ \phi(g) = g\psi(g^{-1})$ is a homomorphism.

We say $H \leq G$ is ψ -admissible if $[G, \phi(H)] \subseteq H$.

Suppose $H \leq G$ is ψ -admissible. Let N = G/H (left cosets (with respect to ·)), then

$$xH \star yH = (x \circ y)H = x\psi(x^{-1})y\psi(x)H, xH, yH \in N$$

makes (N, \star) into a group.

Letting $g \odot xH = (gx)H$ makes (G, N) a bracoid.

Furthermore, this construction works if and only if H is ψ -admissible.

Background

Bracoid Webs

Hopf-Galois Structures

Next Steps

A construction of Martin-Lyons and T.

One way to construct bracoids is the following:

Let $\mathfrak{B} = (B, \circ, \cdot)$ be a brace.

Let A be a strong left ideal of \mathfrak{B} -that is:

- *A* ⊴ (*B*, ∘);
- $A \leq (B, \cdot);$
- $b^{-1} \circ (b \cdot a) \in A$ for all $a \in A, b \in B$.

Then $(B, \cdot, B/A, \star, \odot)$ is a bracoid, where $bA \star cA = (b \circ c)A$ and $b \odot cA = bcA$.

Fact. If $\psi \in Ab(G)$ and *H* is ψ -admissible then *H* is a strong left ideal of (G, \circ, \cdot) , and our bracoid construction can be seen as an example of this more general case.

Alan Koch Background $[G,\phi(H)]\subseteq H,\ \phi(g)=g\psi(g^{-1})$

Example

Vext Steps

Let $G = S_n$, $n \ge 3$. Define $\psi : G \to G$ by

$$\psi(\sigma) = \begin{cases} \mathbf{1}_G & \sigma \in A_n \\ (\mathbf{12}) & \sigma \notin A_n \end{cases}$$

Since $\psi(G) = \langle (12) \rangle$ this is an abelian map. Let $H = \langle (12) \rangle$. Then $\phi(H) = \{1_G\}$ and $[G, \{1_G\}] \subseteq H$. Hence H is ψ -admissible.

Write N = G/H. The group $(N, \star) \cong A_n$.

If n = 3 then G acts on N as in the previous example.

Background

Bracoid Webs An Example Hopf-Galois Structures

Next Steps

Question

Yes:

Does every abelian map yield $\psi\text{-admissible subgroups?}$

Do examples exist?

• H = G, $H = \{1_G\}$, though these are not terribly interesting.

- $H = \ker \psi$ since $\phi(k) = k\psi(k^{-1}) = k$ for $k \in \ker \psi$, and $[G, \ker \psi] \subseteq \ker \psi$ since $\ker \psi \trianglelefteq G$.
- *H* = fix ψ, the subgroup of fixed points, since φ(*H*) = {1_{*G*}}.
 But fix ψ may be trivial.
- $H \leq \operatorname{fix} \psi$.
- $H = \text{fix } \psi \text{ ker } \psi$ (which could possibly be all of *G*).

However, most subgroups tend not to be $\psi\text{-admissible}.$

Background

Bracoid Webs

An Example

Hopf-Galois Structures

Next Steps

Background

2 Bracoid Webs

3 An Example

4 Hopf-Galois Structures

5 Next Steps

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Definition

Background

Bracoid Webs

An Example

Hopf-Galois Structures

Next Steps

A bracoid web is a collection

 $(G, \{\circ_m : m \ge 0\}, N, \{\star_n : n \ge 0\}, \{\odot_{m,n} : m, n \ge 0\})$ such that $(G, \circ_m, N, \star_n, \odot_{m,n})$ is a bracoid for every $m, n \ge 0$.

Brace Block: Complete Graph

Bracoid Web: Bipartite Graph

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Background

Bracoid Webs

I

An Example

Hopf-Galois Structures

Next Steps

Abelian maps and bracoid webs

Let
$$\psi \in Ab(G)$$
, and recall $\phi(g) = g\psi(g^{-1})$.

We say $H \leq G$ is fully ψ -admissible if $[G, \phi^n(H)] \subseteq H$ for all $n \geq 1$.

Examples

1 $H = \text{fix } \psi$. Then $[G, \phi^n(H)] = [G, \{1_G\}] = \{1_G\} \subseteq H$. 2 $H = \text{ker } \psi$. Then $[G, \phi^n(H)] = [G, H] \subseteq H$ since $H \trianglelefteq G$. 3 $H = \text{fix } \psi \text{ ker } \psi$. Then $[G, \phi^n(H)] = [G, \text{ker } \psi] \subseteq H$.

$[G,\phi^n(H)]\subseteq H.$

Key concepts.

Alan Koch

Bracoid Webs

- If ψ ∈ Ab(G), so is ψ_n : g ↦ φⁿ(g)⁻¹g for all n, allowing us to form the group (G, ∘_n).
- A subgroup *H* is ψ_n -admissible iff $[G, \phi_n(H)] \subseteq H$, where $\phi_n(h) = h\psi_n(h)^{-1} = h(h^{-1}\phi^n(h)) = \phi^n(h)$.
- A subgroup *H* is ψ_n -admissible iff $[G, \phi^n(H)] \subseteq H$.

Let N = G/H (left cosets) and define $xH \star_n yH = (x \circ_n y)H$. Then $(G, \cdot, N, \star_n, \odot)$ is a bracoid, where $g \odot xH = gxH$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

First result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Background

Bracoid Webs

An Example

Hopf-Galois Structures

Next Steps

Theorem Let $H \leq (G, \cdot)$ be fully ψ -admissible. Then $(G, \cdot, N, \{\star_n : n \geq 1\}, \odot)$ is a bracoid web.

First Bracoid Web

Casting a larger web

Background

Alan Koch

Bracoid Webs

An Example

Hopf-Galois Structures

Next Steps

Of course, given $\psi \in Ab(G)$ we have a collection of groups $\{(G, \circ_m) : m \ge 0\}$ with $a \circ_0 b = a \cdot b$.

Let $[a, b]_m$ be the commutator of a and b in (G, \circ_m) . Proposition If $H \le (G, \cdot)$ is fully ψ -admissible then $[G, \phi^n(H)]_m \subseteq H$ for all $m, n \ge 1$, and $H \le (G, \circ_m)$.

So $(G, \circ_m, N, \star_n, \odot_{m,n})$ is a brace as well, where $N = (G, \circ_n)/H$ and $g \odot_m (x \circ_n H) = (g \circ_m x) \circ_n H$.

・ロト・「聞・・「問・・「問・・」 しゃくの

Background

Bracoid Webs

An Example

Hopf-Galois Structures

Next Steps

For $\psi \in Ab(G)$ and *H* a ψ -admissible subgroup, there appear to be two types of cosets:

$$xH = \{xh : h \in H\} \quad x \circ H = \{x \circ h : h \in H\}.$$

$$\begin{aligned} x \circ h &= x\psi(x^{-1})h\psi(x) \\ &= x\psi(x^{-1})h\psi(h^{-1}xh) \\ &= x\psi(x^{-1})\phi(h)\psi(x)\phi(h)^{-1}h \\ &= x[\psi(x^{-1}),\phi(h)]h \\ &= xh', \ h' \in H. \end{aligned}$$

Thus the cosets coincide. Generally, $x \circ_n H = xH$. For context, we will continue to represent the cosets as $x \circ_n H$ when $N = (G, \circ_n)/H$.

On cosets

Main result

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Background

Bracoid Webs

An Example

Hopf-Galois Structures

Next Steps

Theorem Let $H \leq (G, \cdot)$ be fully ψ -admissible. Then $(G, \{\circ_m : m \geq 0\}, \cdot, N, \{\star_n : n \geq 1\}, \{\odot_{m,n} : m \geq 0, n \geq 1\})$ is a bracoid web.

Bracoid Web

Background

An Example

Hopf-Galois Structures

Next Steps

Background

2 Bracoid Webs

3 An Example

4 Hopf-Galois Structures

5 Next Steps

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Background Bracoid Web An Example Hopf-Galois Structures

Next Steps

Recall $\psi_m(q) = \phi^m(q)^{-1}q$ Let G = F(a, b) be a free group. Let $\psi : G \to G$ be given by $\psi(a) = 1_G$, $\psi(b) = b^{-1}$. Generally, $\psi (\prod a^{r_i} b^{s_i}) = b^{s(g)}$ where $s(g) = \sum s_i$. Then $\psi(G) = \langle b \rangle$ and $\psi \in Ab(G)$. Note that $\phi(a^i) = a^i$, $\phi(b^i) = b^{2i}$. Then $\psi_m(a) = 1$ and $\psi_m(b) = b^{1-2^m}$ for all m > 1. For $m \geq 0$ operation in (G, \circ_m) is

$$g \circ_m h = g \psi_m(g^{-1}) h \psi_m(g) = g b^{(2^m - 1)s(g)} h b^{(1 - 2^m)s(g)}.$$

Note that all of the binary operations are different because $\psi_{m_1} \neq \psi_{m_2}, m_1 \neq m_2$ and Z(F(a, b)) is trivial.

Also, (G, \circ_m) nonabelian since $a \circ_m b = ab$ and $b \circ_m a = b^{2^m} a b^{1-2^m}$.

Background Bracoid Web

An Example

Hopf-Galois Structures

Next Steps

So *H* is fully ψ -admissible. Let us try to understand $N = (G, \circ_n)/H$.

We have $x \circ_n H = y \circ_n H$ iff $\psi^n(y)y^{-1}\psi^n(y^{-1}) \circ_n x \in \langle b^2 \rangle$. Let $\overline{y} = \psi^n(y)y^{-1}\psi^n(y^{-1})$ (inverse to $y \in (G, \circ_n)$). Since

Let $H = \langle b^2 \rangle = \text{fix } \psi$

$$(a \circ_n H) \star_n (b \circ_n H) = (ab) \circ_n H$$
$$(b \circ_n H) \star_n (a \circ_n H) = (b^{2^n} a b^{1-2^n}) \circ_n H$$
$$\overline{ab} \circ_n b^{2^n} a b^{1-2^n} \notin \langle b^2 \rangle$$
$$\overline{b^{2^n} a b^{-2^n}} \circ_n (b^{2^{n'}} a b^{-2^{n'}}) \notin \langle b^2 \rangle, \ n \neq n'$$

the groups (G, \star_n) are nonabelian and pairwise distinct. Let $g \odot_{m,n} (x \star_n H) = (g \circ_m x) \star_n H$. The resulting bracoid web is $(G, \{\circ_m : m \ge 0\}, G/H, \{\star_n : n \ge 1\}, \{\odot_{m,n} : m \ge 0\})$.

- Background Bracoid Webs
- An Example
- Hopf-Galois Structures
- Next Steps

- 2 Bracoid Webs
- 3 An Example
- 4 Hopf-Galois Structures
- 5 Next Steps

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Greither-Pareigis Theory

Alan Koch

Background Bracoid Webs

An Example

Hopf-Galois Structures

Next Steps

Throughout this section, all groups and field extensions are finite.

Let:

- L/K be a separable field extension;
- E/L be an extension such that E/K is Galois;
- $G = \operatorname{Gal}(E/K), \ H = \operatorname{Gal}(E/L).$

It follows from Greither-Pareigis theory that Hopf-Galois structures on L/K correspond to regular subgroups $N \leq \text{Perm}(G/H)$ which are stabilized by G, where G acts on Perm(G/H) by conjugation by $\lambda(G)$ (left translation of cosets).

The isomorphism class of N is the type of the Hopf-Galois structure.

For $k \in G$ and $\eta \in N$ we write ${}^{k}\eta = \lambda(k)\eta\lambda(k^{-1})$.

We will explicitly describe two regular subgroups for each bracoid.

Background Bracoid Webs

Hopf-Galois Structures

Next Steps

The First Hopf-Galois Structure

Let $\psi \in Ab(G)$, and let $H \leq G$ be ψ -admissible. Define $N = \{\eta_g : g \in G\} \subseteq Perm(G/H)$ where $\eta_g[xH] = (g \circ x)H = gH \star xH.$

Then *N* is a subgroup of Perm(*G*/*H*): $\eta_{g_1}\eta_{g_2} = \eta_{g_1 \circ g_2}$.

Fact. $\eta_{g_1} = \eta_{g_2}$ if and only if $g_1g_2^{-1} \in H$, so |N| = |G/H|.

Since $\eta_g[1_G H] = gH$ the subgroup $N \leq \text{Perm}(G/H)$ is transitive, hence regular.

Can show ${}^{k}\eta_{g} = \eta_{k(g \circ k^{-1})}$ hence the action is *G*-stable.

So $N \leq \text{Perm}(G/H)$ gives a Hopf-Galois structure on L/K.

Background Bracoid Webs An Example

Hopf-Galois Structures

Next Steps

Keep the notation from above.

Define $P = {\pi_g : g \in G} \le \text{Perm}(G/H)$ where

$$\pi_g[xH] = (x \circ g)H = xH \star gH.$$

The Second HGS

As before:

- *P* is indeed a subgroup; here $\pi_{g_1}\pi_{g_2} = \pi_{g_2 \circ g_1}$.
- $\pi_{g_1} = \pi_{g_2}$ iff g_1 and g_2 are in the same left coset;
- P is regular;
- *P* is *G*-stable: ${}^{k}\pi_{g} = \pi_{k(k^{-1}\circ g)}$.

So $P \leq \text{Perm}(G/H)$ gives a Hopf-Galois structure on L/K, distinct from N if (G, \circ) is nonabelian.

Background Bracoid Webs

An Example

Hopf-Galois Structures

Next Steps

Let $H \leq G$ be fully ψ -admissible.

For $m \ge 0$, let E_m/K_m be a Galois extension, Gal $(E_m/K_m) = (G, \circ_m)$.

Let
$$N_n = \{\eta_g^{(m,n)} : g \in (G, \circ_m)\} \le \operatorname{Perm}((G, \circ_m)/H)$$
 with $\eta_g^{(m,n)}[x \circ_m H] = (g \circ_n x) \circ_m H.$

This gives a Hopf-Galois structure on $L_{m,n} := E_m^{N_n}$.

Similar results hold for P_n .

So we may get Hopf-Galois structures on field extensions we (presumably) don't care about.

Background Bracoid Webs An Example

Hopf-Galois Structures

Next Steps

Another example

Let
$$G = D_n \times D_n = \langle r, s, t, u \rangle, \ |r| = |t| = n, \ |s| = |u| = 2.$$

Define $\psi \in Ab(G)$ by $\psi(r) = \psi(t) = 1_G$, $\psi(s) = u$, $\psi(u) = s$.

Then $H = \langle su \rangle$ is fully ψ -admissible.

Can compute the entire bracoid web:

$$\begin{array}{l} (G,\circ_0) = D_n \times D_n \\ (G,\circ_1) \cong C_2 \times ((C_n \times C_n) \rtimes C_2) \\ (G,\circ_2) \cong C_{2n} \times C_{2n} \\ (G,\circ_n) = (G,\circ_2) \end{array} \xrightarrow{(N,\star_1)} \cong (C_n \times C_n) \rtimes C_2 \\ (N,\star_2) \cong C_{2n} \\ (N,\star_n) = (N,\star_2), \ n \ge 2. \end{array}$$

So we get Hopf-Galois structures on two subextensions of three different Galois extensions...

Alan Koch Background Bracoid Webs An Example

Hopf-Galois Structures

Next Steps

 $G \cong D_n \times D_n, \ C_2 \times ((C_n \times C_n) \rtimes C_2), \text{ or } C_{2n} \times C_{2n}$

Classical Galois Structures Regular subgroups of $Perm(G/C_2)$

Background Bracoid Webs An Example Hopf-Galois

Background

Next Steps

2 Bracoid Webs

3 An Example

4 Hopf-Galois Structures

Outline

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Unresolved issues

(ロ) (同) (三) (三) (三) (○) (○)

- Next Steps

Alan Koch

- Does "ψ-admissible" imply "fully ψ-admissible"? We have no example of H < G such that $[G, \phi(H)] < H$ but $[G, \phi^n(H)] \not\leq H$ for some n. We expect they exist.
- Under what conditions are the bracoids in a brace web reduced?

Recall reduced means that no nontrivial element of

 (G, \circ_m) acts trivially on (N, \star_n) .

Unresolved issues

Background Bracoid Webs An Example

Alan Koch

Hopf-Galois Structures

Next Steps

• What is the group structure of $(G/H, \star_n)$? Can be difficult in general.

If $H = \text{fix } \psi$, then $H = \text{ker } \phi$, hence

$$(G/H,\star_1) = (G,\circ)/H \cong \phi(G) \leq (G,\cdot)$$

hence $(G/H, \star_1)$ can be realized as a subgroup of *G*. In general, $H \neq \text{fix } \psi_n$.

 Can this construction be extended to recent generalizations of "abelian" maps (Caranti-Stefanello, K., Stefanello-Trappeniers)?
 Possible, but it seems the definition of ψ-admissible would need to change.

References I

Alan Koch

Background Bracoid Webs An Example Hopf-Galois Structures

Next Steps

A. Caranti and L. Stefanello.

From endomorphisms to bi-skew braces, regular subgroups, normalising graphs, the yang-baxter equation, and hopf galois structures. *arXiv:2104.01582v1*, 2021.

A. Caranti and L. Stefanello. Brace blocks from bilinear maps and liftings of endomorphisms. *arXiv:2110.11028*, 2022.

Cornelius Greither and Bodo Pareigis. Hopf Galois theory for separable field extensions. *J. Algebra*, 106(1):239–258, 1987.

Alan Koch.

Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures. *Proc. Amer. Math. Soc. Ser. B*, 8:189–203, 2021.

Alan Koch.

Abelian maps, brace blocks, and solutions to the Yang-Baxter equation. *J. Pure Appl. Algebra*, 226(9):Paper No. 107047, 2022.

Alan Koch.

Commutator-central maps, brace blocks, and Hopf-Galois structures on Galois extensions.

arXiv:2206.07540, 2022.

References II

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Hopf-Galois Structures

Alan Koch

Next Steps

Alan Koch and Paul J. Truman. Opposite skew left braces and applications. J. Algebra, 546:218–235, 2020.

Isabel Martin-Lyons and Paul J. Truman. Skew bracoids. *arxiv:2305.15848*, 2023.

L. Stefanello and S. Trappeniers. On bi-skew braces and brace blocks. *arXiv:2205.15073*, 2022.

Bracoid Web An Example

Hopf-Galois Structures

Next Steps

Thank you.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで