Twisting Biquadratic Extensions

Nafeesa Khalil
University of Manchester

August 4, 2023

Drinfeld Twists

Let H be a Hopf algebra.
Definition 1
[Maj00, Ex 2.3.1]
A 2-cocycle of H is an invertible element $J \in H^{\otimes 2}$ such that

$$
\Rightarrow(1 \otimes J)(1 \otimes \Delta) J=(J \otimes 1)(\Delta \otimes 1) J
$$

J is counital if

$$
(\epsilon \otimes i d) J=(i d \otimes \epsilon) J=1
$$

Definition 2

A counital 2-cocycle J of a Hopf algebra H is called a Drinfeld twist.

Twisting Hopf algebras

Proposition 1

[Maj00, Thm 2.3.4]
Let H be a Hopf algebra with a Drinfeld twist J. Define H^{J} with the same algebra structure and counit as H, and coproduct and antipode as follows;

$$
\Delta_{J}(h)=J(\Delta(h)) J^{-1}, \quad S_{J}(h)=U(S(h)) U^{-1}
$$

where $U=\Sigma J^{1}\left(S\left(J^{2}\right)\right)$ is invertible.
Then H^{J} is a Hopf algebra.

Twisting Hopf module algebras

Proposition 2

[Maj00, Pn 2.3.8]
Let H be a Hopf algebra with a Drinfeld twist J. Let (A, \cdot) be a H-module algebra. Define a product $\cdot \jmath: A \times A \rightarrow A$ on the set A by

$$
a \cdot \jmath b=\cdot\left(J^{-1} \triangleright(a \otimes b)\right)
$$

for all $a, b \in A$.
Then $\left(A, \cdot \jmath, 1_{A}\right)$ is a new associative algebra which we label A_{J}.

Proposition 3

[Maj00, Pn 2.3.8]
If H is a Hopf algebra with Drinfeld twist J and A is a H-module algebra, then the twisted algebra A^{J} is also H^{J}-module algebra.

Quasitriangular Structure

Definition 3

A quasitriangular structure of H is an invertible element $\mathcal{R} \in H \otimes H$ s.t.

$$
\begin{aligned}
&(\Delta \otimes 1) \mathcal{R}=\mathcal{R}_{13} \mathcal{R}_{23},(1 \otimes \Delta) \mathcal{R}=\mathcal{R}_{13} \mathcal{R}_{12} \\
& \tau \circ \Delta h=\mathcal{R}(\Delta h) \mathcal{R}^{-1}, \quad \forall h \in H
\end{aligned}
$$

where $\mathcal{R}_{i j} \in H^{\otimes 3}$ is \mathcal{R} in the i th and j th factors and τ is the flip map defined on two vector spaces A, B as $\tau: A \otimes B \rightarrow B \otimes A, a \otimes b \mapsto b \otimes a$. A commutative quasitriangular Hopf algebra is necessarily cocommutative.

Lemma 4

\mathcal{R} is a Drinfeld Twist.

Twisting a biquadratic extension I

Let $a, b \in \mathbb{Z}$ be such that $a, b>1$ are distinct squarefree integers. Then $\mathbb{Q}(\sqrt{a}, \sqrt{b}) / \mathbb{Q}$ is Galois with Galois group

$$
G=V_{4}=\left\langle\sigma, \tau \mid \sigma^{2}=\tau^{2}=1, \sigma \tau=\tau \sigma\right\rangle
$$

where σ permutes \sqrt{a} and $-\sqrt{a}, \tau$ permutes \sqrt{b} and $-\sqrt{b}$.
$G=V_{4}$ is the smallest group for which there exists a cohomologically non-trivial QT structure on QG, given by the QT structure

$$
\mathcal{R}=\frac{1}{2}(e \otimes e+\sigma \otimes e+e \otimes \tau-\sigma \otimes \tau)
$$

$Q V_{4}$ is commutative so $\mathbb{Q} V_{4}^{\mathcal{R}}=\mathbb{Q} V_{4}$. We construct a new $\mathbb{Q} V_{4}$-module algebra $(\mathbb{Q}(\sqrt{a}, \sqrt{b}), \star)$. By definition, $c \star d=\cdot\left(\mathcal{R}^{-1} \triangleright(c \otimes d)\right)$. By a standard result $\mathcal{R}^{-1}=(S \otimes i d) \mathcal{R}$. In this case, \mathcal{R} is self inverse.

Twisting a biquadratic extension II

$$
\begin{aligned}
\sqrt{a} \star \sqrt{a} & =\cdot\left(\mathcal{R}^{-1} \triangleright(\sqrt{a} \otimes \sqrt{a})\right) \\
& \left.=\cdot\left(\frac{1}{2}(e \otimes e+\sigma \otimes e+e \otimes \tau-\sigma \otimes \tau)\right)(\sqrt{a} \otimes \sqrt{a})\right) \\
& =\cdot\left(\frac{1}{2}(\sqrt{a} \otimes \sqrt{a}-\sqrt{a} \otimes \sqrt{a}+\sqrt{a} \otimes \sqrt{a}+\sqrt{a} \otimes \sqrt{a})=a .\right.
\end{aligned}
$$

Similar computations give,
$\sqrt{a} \star \sqrt{a}=a, \quad \sqrt{b} \star \sqrt{b}=b, \quad \sqrt{a} \star \sqrt{b}=-\sqrt{a b}, \quad \sqrt{b} \star \sqrt{a}=\sqrt{a b}$.

Quaternion Algebras I

Definition 5

[Voi23] An algebra B over F is a quaternion algebra if there exist $i, j \in B$ such that $1, i, j, i j$ is an F-basis for B and

$$
i^{2}=a, j^{2}=b, \text { and } j i=i j
$$

for some $a, b \in F^{\times}$. We write $B=\left(\frac{a, b}{F}\right)$.

Returning to our previous example, define a map of algebras

$$
\begin{aligned}
T & :(\mathbb{Q}(\sqrt{a}, \sqrt{b}), \star) \rightarrow\left(\frac{a, b}{\mathbb{Q}}\right), \\
T(\sqrt{a}) & =i, T(\sqrt{b})=j, T(\sqrt{a} b)=k
\end{aligned}
$$

Quaternion Algebras II

Then $(\mathbb{Q}(\sqrt{a}, \sqrt{b}), \star) \cong\left(\frac{a, b}{\mathbb{Q}}\right)$, so it is either a division algebra or the matrix algebra $M_{2}(\mathbb{Q})$.
A quaternion algebra is a division algebra iff $N(q) \neq 0$, $\forall 0 \neq q=\lambda_{1}+\lambda_{2} i+\lambda_{3} j+\lambda_{4} k$.

Let b be odd and suppose that the Jacobi symbol $\left(\frac{a}{b}\right)=-1$.
We show that $\left(\frac{a, b}{Q}\right)$ is a division algebra.
Suppose \exists a rational, non-trivial solution to $\lambda_{1}^{2}-\lambda_{2}^{2} a-\lambda_{3}^{2} b+\lambda_{4}^{2} a b=0$ given by $(\alpha, \beta, \gamma, \delta)$ where $\alpha, \beta, \gamma, \delta \in \mathbb{Q}$ not all zero. Then \exists an integer solution (k, l, m, n), not all zero such that the non zero elements are coprime.

Quaternion Algebras III

Since $\left(\frac{a}{b}\right)=-1, \exists$ a prime p dividing b such that a is a quadratic non-residue $\bmod p$. Let $b=p b^{\prime}$ where $p \nmid b^{\prime}$ and consider

$$
\begin{aligned}
k^{2}-a l^{2} & -b m^{2}+a b n^{2}=0 \\
\Rightarrow k^{2} & \equiv a l^{2} \quad \bmod p \\
\Rightarrow k, I & \equiv 0 \quad \bmod p \\
\Rightarrow k^{2}-a I^{2} & \equiv 0 \quad \bmod p^{2} \\
\Rightarrow p b^{\prime} m^{2}+a p b^{\prime} n^{2} & \equiv 0 \quad \bmod p^{2} \\
\Rightarrow b^{\prime} m^{2}+a b^{\prime} n^{2} & \equiv 0 \quad \bmod p \\
\Rightarrow m, n & \equiv 0 \quad \bmod p
\end{aligned}
$$

This contradicts the assumption that the solution is coprime. Thus $\left(\frac{a, b}{Q}\right)$ is a division algebra.

H-Galois extension of fields

Definition 6

[Chi00, Definition 2.7]
Given a K Hopf algebra H, a field extension L / K is said to be a H-Galois extension if L is a H-module algebra and the map

$$
\begin{aligned}
& j: L \# H \rightarrow \operatorname{End}_{K}(L), \\
& j\left(s \otimes_{K} h\right)(x)=\operatorname{sh}(x) \quad \forall s, x \in L, h \in H
\end{aligned}
$$

is an isomorphism of K-vector spaces.

H-Galois extension of algebras

Definition 7

[KT81] Let R be a commutative ring, B an R-algebra with subalgebra $A \subseteq B$. Let H be a finitely generated R-Hopf algebra coacting on B. Then B is a H-Galois extension of A if

1. B is a right H-comodule algebra,
2. $A=\left\{a \in B \mid \phi(a)=u^{*}(\phi) . a, \quad \forall \phi \in H^{*}\right\}$. That is $A=B^{C o H}$.
3. The left B-module homomorphism $\lambda: B \otimes_{A} B \rightarrow B \otimes_{R} H$ given by $\lambda(x \otimes y)=x y^{(1)} \otimes y^{(2)}$ is surjective.

Example 8

Let L / K be a finite extension of fields. Then set $R=K, A=K, B=L, H=(K G)^{*}$ in the previous definition. If L / K is a Galois extension of fields, then it is a H-Galois extension of algebras. Moreover, the map λ is the dual map of j.

By a theorem 2.5 stated in [EN22], if a f.d. Hopf algebra H acts on a division algebra \mathcal{Q} then $\mathcal{Q} / \mathcal{Q}^{H}$ is H-Galois iff $\operatorname{rank}_{\mathcal{Q}^{H}} \mathcal{Q}=\operatorname{dimH}$.

We have $H=\mathbb{Q} V_{4}$ acting on $\left(\frac{a, b}{Q}\right)$.

$$
\begin{aligned}
\sigma & \in V_{4}, \sigma(m)=m \Longleftrightarrow m \in \mathbb{Q} \\
& \Rightarrow\left(\frac{a, b}{\mathbb{Q}}\right)^{H}=\mathbb{Q} .
\end{aligned}
$$

Moreover, $\operatorname{rank}_{\left(\frac{a, b}{Q}\right)^{H}}\left(\frac{a, b}{Q}\right)=\operatorname{rank}_{\mathrm{Q}}\left(\frac{a, b}{Q}\right)=4=\operatorname{dimH}$.
Thus $\left(\frac{a, b}{Q}\right) / \mathbb{Q}$ is a $\mathbb{Q} V_{4}$-Galois extension.

Questions...

What can the arithmetic in the biquadratic field extension tell us about the arithmetic in the quaternion algebra?

For example, in a biquadratic field extension $L=Q(\sqrt{a}, \sqrt{b})$ the ring of algebraic integers O_{L} is the maximal order in L.

- What happens to O_{L} under the twisting operation?
- Is it closed under the \star-product?
- If so, is the new order also maximal?

Further questions...

- Twisting process is invertible.
- Given a quaternion algebra $L=\left(\frac{a, a}{K}\right)$ it's clear that V_{4} acts covariantly on L. So L is a $K V_{4}$-module algebra.
- If we apply the twisting process to this structure what is the resulting twisted algebra?

Bibliography

[Chi00] Lindsay Childs. Taming Wild Extensions. 80. American Mathematical Soc., 2000 (cit. on p. 11).
[EN22] Pavel Etingof and Cris Negron. "Pointed Hopf actions on central simple division algebras". In: Transformation Groups 27.2 (2022), pp. 471-495 (cit. on p. 13).
[KT81] Herbert F Kreimer and Mitsuhiro Takeuchi. "Hopf algebras and Galois extensions of an algebra". In: Indiana University mathematics journal 30.5 (1981), pp. 675-692 (cit. on p. 12).
[Maj00] Shahn Majid. Foundations of quantum group theory. Cambridge university press, 2000 (cit. on pp. 2-4).
[Voi23] John Voight. Quaternion algebras. 2023. URL: https://math.dartmouth.edu/~jvoight/quat-book.pdf (cit. on p. 8).

