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Hopf-Galois structures

Let L/K be finite and separable field extension.

A Hopf-Galois structure (HGS) on L/K is given by a K -Hopf algebra H

together with an action H ↷ L giving to L an H-module algebra

structure, such that the map

j : L⊗ H −→ EndK (L)
is an isomorphism.

l ⊗ h 7−→
(
m 7→ lh(m)

)
Ex. L/K G-Galois, then K [G ] with

∆ : σ → σ ⊗ σ, ε : σ → 1, λ : σ → σ−1

is a K -Hopf-algebra, L is a K [G ]-module-algebra, and j is an

isomorphism.

=⇒ K [G ] gives a HGS on L/K , which is called the classical structure.
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What are the motivations for studying HG theory?

- A non Galois extension may admit Hopf-Galois structures.

- Any (Hopf-)Galois extension may admit several HG structures.

Why study non classical HGS on Galois extensions?

- Galois-module theory. In the context of number theory, it may be

easier to study the structure of the ring of integers with respect to a

certain HG structure rather than another (see the work by Byott).
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HGS and regular subgroups of the holomorph

{HG structures on the Γ− Galois extension L/K} L[G ]Γ

↕ ↕ [GP87]

{regular subgroup of Perm(Γ) normalised by λ(Γ)} G

• the type of the HGS is the isomorphism class of the corresponding

regular subgroup.

For each Γ, G = (G , ·) finite groups with |G | = |Γ|, let

• e(Γ,G ) = #HGS of type G on a Γ-Galois extension

• e′(Γ,G ) = #regular subgroups of Hol(G ) isomorphic to Γ

e(Γ,G ) =
|Aut(Γ)|
|Aut(G )|

e′(Γ,G ) [Byo96]
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Skew Braces

A (left) skew brace is a triple (G , ·, ◦) where G is a set and · and ◦ are

two group operations on G , such that

k ◦ (gh) = (k ◦ g)k−1(k ◦ h).

(G , ·) is called the additive group and (G , ◦) the multiplicative group of

the SB.

The introduction and the study of the skew braces follows that of Rump

braces, and was motivated by their relation with the non-degenerate

set-theoretic solutions of the Yang-Baxter equation.
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SB and regular subgroups of the holomorph

Given a group (G , ·), by the (total) number of skew braces on (G , ·) we
mean the number of distinct operations “◦” on the set G such that

(G , ·, ◦) is a skew brace.

• e′′(Γ,G ) = #SB (G , ·, ◦) such that (G , ◦) ∼= Γ.

e′′(Γ,G ) = e′(Γ,G ) [GV 17]

• SB up to isomorphism can be counted in terms of classes of regular

subgroups of the holomorph.
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The Gamma Functions method

Both the HGS on Galois extensions and the SB relate with regular

subgroups of the holomorph of a group G , when G varies in the set of the

groups of a fixed cardinality.

Theorem [GV17, CDV18] Let G = (G , ·) be a group. TFAE

1. A regular subgroup N ≤ Hol(G )

2. A group operation ◦ on G s.t. (G , ·, ◦) is a SB, (G , ◦) ≃ N

3. A Gamma Function (GF), namely a map γ : G → Aut(G ) such that

γ(gγ(g)(h)) = γ(g)γ(h) (GFE)

γ GF on G ⇝
− N = { λ(g)γ(g) : g ∈ G }
− ” ◦ ” given by g ◦ h = gγ(g)h

Furthermore, # isomorphism classes of SB (G , ·, ◦) = # classes of

gamma functions under ”conjugation” by elements of Aut(G ):

γα(g) = αγ(gα−1

)α−1
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The Gamma Function method for groups of order p2q

To count the HGS and the SB of order p2q with the GF method we need

to describe

• all (isomorphism classes of) groups G of order p2q

• Aut(G ), ∀G

Then, for all G , we have to compute all GF on G , namely all functions

γ : G → Aut(G ), such that γ(gγg (h)) = γ(g)γ(h)

Then, for each γ we can determine the group (G , ◦) and its isomorphism

class, and therefore the number e′(Γ,G ), for each Γ, and then compute

e(Γ,G ).

With an additional computational effort, we can compute # isomorphism

classes of SB (G , ·, ◦):
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• Aut(G ), ∀G [CCDC IJGT21]

Then, for all G , we have to compute all GF on G , namely all functions

γ : G → Aut(G ), such that γ(gγg (h)) = γ(g)γ(h)

Then, for each γ we can determine the group (G , ◦) and its isomorphism

class, and therefore the number e′(Γ,G ), for each Γ, and then compute

e(Γ,G ).

With an additional computational effort, we can compute # isomorphism

classes of SB (G , ·, ◦):

8



Groups of order p2q and their automorphism groups

Type Conditions G Aut(G )

1 Cp2 × Cq Cp(p−1) × Cq−1

2 p | q − 1 Cq ⋊p Cp2 Cp × Hol(Cq)
3 p2 | q − 1 Cq ⋊1 Cp2 Hol(Cq)
4 q | p − 1 Cp2 ⋊ Cq Hol(Cp2)

5 Cp × Cp × Cq GL(2, p)× Cq−1

6 q | p − 1 Cp × (Cp ⋊ Cq) Cp−1 × Hol(Cp)
7 q | p − 1 (Cp × Cp)⋊S Cq Hol(Cp × Cp)
8 3 < q | p − 1 (Cp × Cp)⋊D0 Cq Hol(Cp)× Hol(Cp)
9 2 < q | p − 1 (Cp × Cp)⋊D1 Cq (Hol(Cp)× Hol(Cp))⋊ C2
10 2 < q | p + 1 (Cp × Cp)⋊C Cq (Cp × Cp)⋊ (Cp2−1 ⋊ C2)
11 p | q − 1 (Cq ⋊ Cp)× Cp Hol(Cp)× Hol(Cq)
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Tool#1: isomorphism of p-Sylow

Theorem (Realizability) Let (G , ·, ◦) be a SB of order p2q, where p > 2.

Then, (G , ·) and (G , ◦) have isomorphic Sylow p-subgroups.

- For any GF on G there is always a Sylow p-subgroup H of G which

is γ(H)-invariant;

- this is equivalent to saying that (H, ·, ◦) a subSB of (G , ·, ◦)
• For our groups [FCC12] ⇒ (H, ·) ∼= (H, ◦)

Therefore, if Γ and G are groups of order p2q (p > 2) with non

isomorphic Sylow p-subgroups, then

e(Γ,G ) = e′(Γ,G ) = 0.

As it is well known the same is not true for p = 2 (see [Koh07, SV18]).

RQ
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Tool#2: homomorphism-like theorem

Let G be a group, A ≤ G , and γ : A → Aut(G ) a function.

We call γ a relative gamma function (RGF) on A if it satisfies the GFE

and A is γ(A)-invariant.

Proposition (Lifting and restriction) G finite, A,B ≤ G s.t. G = AB.

• Let γ : G → Aut(G ) be a GF, such that B ≤ ker(γ).

⇒ γ(ba) = γ(a)

If A is γ(A)-invariant, then γ|A : A → Aut(G ) is a RGF on A and

ker(γ) is invariant under γ̃(A) := {ι(a)γ(a) : a ∈ A} ≤ Aut(G ).

• If γ′ : A → Aut(G ) is a RGF such that

1. γ′(A ∩ B) ≡ 1,

2. B is invariant under γ̃′(A) := {ι(a)γ′(a) : a ∈ A}.
Then γ(ba) = γ′(a) is a GF on G , and ker(γ) = ker(γ′)B.

Example: p | q − 1, G of type 1, B q-Sylow. Necessarily B ≤ ker(γ);

moreover A, the p-Sylow, is characteristic ⇒ γ ↔ γ|A

RQ
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Tool#3: RGF on cyclic subgroups

Proposition (RGF on cyclic subgroups) G finite group, A = ⟨a⟩ a cyclic

subgroup of G of order pn (p odd).

For η ∈ Aut(G ) the following are equivalent.

1. There exists a RGF γ : A → Aut(G ) such that γ(a) = η.

2. • A is η-invariant, and

• ord(η) | pn.

Example: p | q − 1, G of type 1, B q-Sylow. Necessarily B ≤ ker(γ);

moreover A, the p-Sylow, is characteristic ⇒ γ ↔ γ|A;

γ|A : A → Aut(G ) = Cp(p−1) × Cq−1

|GF| = |elements of order | p2 in Aut(G )| =

{
p2 if p || q − 1

p3 if p2 | q − 1

12



Tool#3: RGF on cyclic subgroups

Proposition (RGF on cyclic subgroups) G finite group, A = ⟨a⟩ a cyclic

subgroup of G of order pn (p odd).

For η ∈ Aut(G ) the following are equivalent.

1. There exists a RGF γ : A → Aut(G ) such that γ(a) = η.

2. • A is η-invariant, and

• ord(η) | pn.

Example: p | q − 1, G of type 1, B q-Sylow. Necessarily B ≤ ker(γ);

moreover A, the p-Sylow, is characteristic ⇒ γ ↔ γ|A;

γ|A : A → Aut(G ) = Cp(p−1) × Cq−1

|GF| = |elements of order | p2 in Aut(G )| =

{
p2 if p || q − 1

p3 if p2 | q − 1

12



For q ∤ p2 − 1, the numbers e′(Γ,G ) are:

Γ

G
1 2 3

1 p 2pq 2q

2 p(p − 1) 2p(pq − 2q + 1) 2q(p − 1)

3 p2(p − 1) 2p2q(p − 1) 2(p2q − pq − q + 1)

Γ

G
5 11

5 p2 2pq

11 p2(p2 − 1) 2p(1 + qp2 − 2q)

13
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Tool#4: duality

Pairing: λ(G )inv = ρ(G ), where inv : x → x−1,

• the GF associated to the LRR λ(G ) is γ(x) = 1, and correspond to

the trivial SB (G , ·, ·)
• the GF associated to the RRR ρ(G ) is γ(x) = ι(x−1): and

correspond to the SB (G , ·, ·opp)

More generally:

If N ≤ Hol(G ) is a regular subgroup corresponding to γ then N inv is

another regular subgroup of Hol(G ), which corresponds to

γ̃(x) = ι(x−1)γ(x−1)

The two SB (G , ·, ◦) and (G , ·, ◦̃) are dual to each other (see also

[KT20]).
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Proposition (Duality)

Let G be a non-abelian group, and C ≤ G such that

• C cyclic and characteristic;

• C ∩ Z (G ) = { 1 };
• additional technical hypothesis.

If γ is a GF on G such that γ(c) = ι(ckc ) for every c ∈ C , then

either C ≤ ker(γ) or C ≤ ker(γ̃).

Therefore, if γ(C ) ⊆ Inn(C ), for all γ, then

e′(Γ,G ) = |{ γ GF on G : (G , ◦) ∼= Γ }|
= 2 |{ γ GF on G : (G , ◦) ∼= Γ and C ≤ ker(γ) }| .

RQ p2q
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Example: HGS of degree pq

Let p > q be primes and assume q | p − 1 (the other case is trivial)

Theorem [Byo04] The numbers e(Γ,G ) of Hopf-Galois structures of type

G on a Γ-Galois extension of degree pq is

Γ

G Cpq Cp ⋊ Cq

Cpq 1 2(q − 1)

Cp ⋊ Cq p 2(pq − 2p + 1)

To prove this Theorem, we compute with the GF method the number

e′(Γ,G ). Our goal is to find the following table

Γ

G Cpq Cp ⋊ Cq

Cpq 1 2p

Cp ⋊ Cq q − 1 2(pq − 2p + 1)

from which the previous theorem can be obtained by rescaling. 16
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Let B =< b > be the Sylow p-subgroup of G and let γ : G → Aut(G ) be

a GF.

If ker(γ) = G , we get the LRR, namely the trivial SB.

So assume ker(γ) ⪇ G

If G = Cpq, then B ≤ ker(γ), since in Aut(G ) ∼= Cp−1 × Cq−1 there are

no elements of order p.

If G = Cp ⋊ Cq, taking C = B in the Proposition duality, we get that one

between γ and γ̃ has B in the kernel, so we can assume B ≤ ker(γ), and

then double the result.

So, let ker(γ) = B. Then |γ(G )| = q.

Our ”homomorphism” theorem implies that

the GF on G are exactly the extensions of the RGF defined on a q-Sylow.

RQ

17
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By Tool#3, we can define a RGF on a q-Sylow A =< a > of G

γ : A → Aut(G )

a 7→ η

where η has order q, provided that A is γ(A) invariant (η(A) = A).

If G = Cpq, then A is the unique q-Sylow, so it is characteristic, and

η :

{
a → a

b → bs

where s ∈ C∗
p has oder q. This gives q − 1 GF and for each of them

a ◦ b ◦ a⊖1 ̸= b

therefore (G , ◦) is non abelian.

RQ
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If G = Cp ⋊ Cq, then - Aut(G ) ∼= Cp ⋊ Cp−1

- η = ι(x) for x ∈ G of order q.

A =< a > is γ(A)-invariant of and only if x = as for s ∈ {1, . . . , q − 1}.
Therefore, for each of the p choices of the q-Sylow there are q − 1

choices of η, so p(q − 1) GF’s on G = Cp ⋊ Cq.

a ◦ b ◦ a⊖1 = ι(a)γ(a)(b) = ι(a1+s)(b)

{
= b if s = −1

̸= b if s ̸= −1

Summarizing: for each q-Sylow (p choices) the q − 1 GF give in 1 case

(G , ◦) abelian, and in q − 2 cases (G , ◦) non abelian.

Recalling that, in this case we have to double the result we get

Γ

G Cpq Cp ⋊ Cq

Cpq 1 2p

Cp ⋊ Cq q − 1 2(pq − 2p + 1)

RQ

19









Final remarks and a (silly?) question

• Lifting and restriction. LR In the literature there are many ways for

constructing SB, and our construction of GF give one more way. We

made a massive use of this argument and of duality. duality

• However, our general results are not enough for getting the

classification and we need to use a lot of ad hoc arguments.

• Isomorphism classes of SB of order p2q: we computed them and

our results agree with those of Acri and Bonatto.

• Sylow subgroups. Sylow In the p2q case (p odd) the Sylow

subgroups of (G , ·) and (G , ◦) are isomorphic, but this is not always

the case in general.

In our case, Sylow subgroups have another interesting property:

there is always γ(P)-invariant Sylow p-subgroup P, and a

γ(Q)-invariant Sylow q-subgroup Q (in the language of SB this

means that both P and Q are subSB).

Is this always the case or are there examples of SB for which none of

the Sylow p-subgroups of (G , ·) is a Sylow p-subgroup of (G , ◦), for
some p? 23
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Thank you!
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