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together with an action H ~ L giving to L an H-module algebra
structure, such that the map
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Ex. L/K G-Galois, then K[G] with

A:o—0oQo, e:0—-1, \ioc—o !

is a K-Hopf-algebra, L is a K[G]-module-algebra, and j is an
isomorphism.

— K|[G] gives a HGS on L/K, which is called the classical structure.
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What are the motivations for studying HG theory?

- A non Galois extension may admit Hopf-Galois structures.

- Any (Hopf-)Galois extension may admit several HG structures.

Why study non classical HGS on Galois extensions?

- Galois-module theory. In the context of number theory, it may be
easier to study the structure of the ring of integers with respect to a
certain HG structure rather than another (see the work by Byott).
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{HG structures on the I' — Galois extension L/K}  L[G]"
) T [GP8T]
{regular subgroup of Perm(I') normalised by A([')} G

e the type of the HGS is the isomorphism class of the corresponding
regular subgroup.

Foreach I, G = (G, ") finite groups with |G| = |T'], let

e ¢(I', G) = #HGS of type G on a I'-Galois extension
e ¢/(I', G) = #regular subgroups of Hol(G) isomorphic to I

_ [Aut(M)]
e(l,G) = me(ﬂ G) [Byo96]




A (left) skew brace is a triple (G, -, o) where G is a set and - and o are
two group operations on G, such that

ko (gh) = (kog)k (ko h).

(G, ) is called the additive group and (G, o) the multiplicative group of
the SB.



A (left) skew brace is a triple (G, -, o) where G is a set and - and o are
two group operations on G, such that

ko (gh) = (kog)k (ko h).

(G, ) is called the additive group and (G, o) the multiplicative group of
the SB.

The introduction and the study of the skew braces follows that of Rump
braces, and was motivated by their relation with the non-degenerate
set-theoretic solutions of the Yang-Baxter equation.
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SB and regular subgroups of the holomorph

Given a group (G, ), by the (total) number of skew braces on (G, ) we

w_n

mean the number of distinct operations “o” on the set G such that

(G,-,0) is a skew brace.
e”(I,G) = #SB (G, -, 0) such that (G,0) =T.
[ (6 =€(.0) [6v17]]
e SB up to isomorphism can be counted in terms of classes of regular

subgroups of the holomorph.




The Gamma Functions method

Both the HGS on Galois extensions and the SB relate with regular
subgroups of the holomorph of a group G, when G varies in the set of the
groups of a fixed cardinality.



The Gamma Functions method

Both the HGS on Galois extensions and the SB relate with regular
subgroups of the holomorph of a group G, when G varies in the set of the

groups of a fixed cardinality.

Theorem [GV17, CDV18] Let G = (G, -) be a group. TFAE

1. A regular subgroup N < Hol(G)



The Gamma Functions method

Both the HGS on Galois extensions and the SB relate with regular
subgroups of the holomorph of a group G, when G varies in the set of the

groups of a fixed cardinality.

Theorem [GV17, CDV18] Let G = (G, -) be a group. TFAE

1. A regular subgroup N < Hol(G)
2. A group operation o on G s.t. (G,-,0)isa SB, (G,0) ~ N



The Gamma Functions method

Both the HGS on Galois extensions and the SB relate with regular
subgroups of the holomorph of a group G, when G varies in the set of the

groups of a fixed cardinality.
Theorem [GV17, CDV18] Let G = (G, -) be a group. TFAE
1. A regular subgroup N < Hol(G)

2. A group operation o on G s.t. (G,-,0)isa SB, (G,0) ~ N
3. A Gamma Function (GF), namely a map v : G — Aut(G) such that

v(gv(g)(h)) = v(g)v(h)  (GFE)

- N={Xg)(e):g€G}

GF G
TEEOME T o given by g o h = gr(g)h



The Gamma Functions method

Both the HGS on Galois extensions and the SB relate with regular
subgroups of the holomorph of a group G, when G varies in the set of the

groups of a fixed cardinality.

Theorem [GV17, CDV18] Let G = (G, -) be a group. TFAE

1. A regular subgroup N < Hol(G)
2. A group operation o on G s.t. (G,-,0)isa SB, (G,0) ~ N
3. A Gamma Function (GF), namely a map v : G — Aut(G) such that

v(gv(g)(h)) = v(g)v(h)  (GFE)

- N={Xg)(e):g€G}

GF G
TEEOME T o given by g o h = gr(g)h

Furthermore, # isomorphism classes of SB (G, -,0) = # classes of
gamma functions under " conjugation” by elements of Aut(G):

7*(g) = av(g® o
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The Gamma Function method for groups of order p?q

To count the HGS and the SB of order p?q with the GF method we need
to describe

e all (isomorphism classes of) groups G of order p?q (Holder)
e Aut(G), VG [CCDC 1JGT21]

Then, for all G, we have to compute all GF on G, namely all functions

7: G — Aut(G), such that v(g7vg(h)) = v(g)v(h)

Then, for each v we can determine the group (G, o) and its isomorphism
class, and therefore the number €'(T", G), for each I, and then compute
e(T, G).

With an additional computational effort, we can compute # isomorphism
classes of SB (G, -, 0):



Groups of order p?q and their automorphism groups

Type | Conditions G Aut(G)
1 sz X Cq Cp(p—l) X qul
2 plg—1 Cq Xp Cp2 Cp x Hol(Cq)
3 p*lg—1 Cq X1 Cp2 Hol(C,)
4 glp—1 Cp2 % Cq Hol(C,2)
5 Cp x Cp x Cq GL(2,p) x Cq—1
6 qglp—1 Cp x (Cp X Cq) Cp—1 x Hol(Cp)
7 glp—1 (Cp x Cp) X5 Cq Hol(Cp x Cp)
8 3<q|p—11](C,xCp)xpoCq Hol(C,,) x Hol(C,)
9 2<q|p—11|(C,xCp)xp1Cq | (Hol(Cp) x Hol(Cp)) % Ca
10 | 2<q|p+1| (CoxCp)xcCq | (CpoxCp)x(Cpry xCo)
11 plg—1 (Cqg xCp) xCp Hol(C,,) x Hol(Cq)
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Tool#1: isomorphism of p-Sylow

Theorem (Realizability) Let (G, -,0) be a SB of order p?>q, where p > 2.
Then, (G, ) and (G, o) have isomorphic Sylow p-subgroups.

- For any GF on G there is always a Sylow p-subgroup H of G which
is v(H)-invariant;

- this is equivalent to saying that (H,-, o) a subSB of (G, -, 0)

e For our groups [FCC12] = (H,-) = (H,o0)

Therefore, if [ and G are groups of order p?q (p > 2) with non
isomorphic Sylow p-subgroups, then

e(l,G)=¢€(I,G) =0.

As it is well known the same is not true for p = 2 (see [Koh07, SV18]).
©
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The following Proposition gives a criterion to decide if a GF on G is the
extension of a RGF, and conversely to show that a RGF on a subgroup of
G can be extended to G.

Proposition (Lifting and restriction) G finite, A,B < G s.t. G = AB.

e Let v: G — Aut(G) be a GF, such that B < ker(7).
= (ba) = ~(2)
If Aisy(A)-invariant, then yj4 : A — Aut(G) is a RGF on A and
ker(y) is invariant under 7(A) := {c(a)v(a) : a € A} < Aut(G).
e If v/ : A— Aut(G) is a RGF such that
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2. B is invariant under '(A) := {1(a)y'(a) : a € A}
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Tool#2: homomorphism-like theorem

Let G be a group, A< G, and 7 : A — Aut(G) a function.
We call v a relative gamma function (RGF) on A if it satisfies the GFE
and A is y(A)-invariant.

Proposition (Lifting and restriction) G finite, A,B < G s.t. G = AB.

e Let v: G — Aut(G) be a GF, such that B < ker(7).
= 7(ba) = (a)
If Ais y(A)-invariant, then yj4 : A — Aut(G) is a RGF on A and
ker(y) is invariant under 7(A) := {c(a)v(a) : a € A} < Aut(G).
o If v/ : A— Aut(G) is a RGF such that
1. /' (ANB) =1,
2. B is invariant under 5'(A) := {1(a)y'(a) : a € A}.
Then y(ba) = +/(a) is a GF on G, and ker(v) = ker(y')B.

Example: p| g —1, G of type 1, B g-Sylow. Necessarily B < ker(7);
moreover A, the p-Sylow, is characteristic = v <> |4
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Tool#3: RGF on cyclic subgroups

Proposition (RGF on cyclic subgroups) G finite group, A = (a) a cyclic
subgroup of G of order p" (p odd).

For n € Aut(G) the following are equivalent.
1. There exists a RGF v : A — Aut(G) such that v(a) = 7.

2. e Ais n-invariant, and
e ord(n) | p".
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Tool#3: RGF on cyclic subgroups

Proposition (RGF on cyclic subgroups) G finite group, A = (a) a cyclic
subgroup of G of order p" (p odd).

For n € Aut(G) the following are equivalent.
1. There exists a RGF v : A — Aut(G) such that v(a) = 7.

2. e Ais n-invariant, and
e ord(n) | p".

Example: p| g — 1, G of type 1, B g-Sylow. Necessarily B < ker(7);
moreover A, the p-Sylow, is characteristic = 7 <> y|4;

VA - A— Aut(G) = Cp(p—l) X Cq_l

prifpllg—1

|GF| = |elements of order | p? in Aut(G)| = { e o
p*ifp°lg—1

12



For g1 p> — 1, the numbers &/(I", G) are:

¢ 1 2 3
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p 2pq 2q
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Tool#4: duality

Pairing: A\(G)™ = p(G), where inv : x — x71,

e the GF associated to the LRR A(G) is y(x) = 1, and correspond to
the trivial SB (G, -, -)

e the GF associated to the RRR p(G) is v(x) = ¢(x~1): and
correspond to the SB (G, -, -°PP)
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Tool#4: duality

Pairing: A\(G)™ = p(G), where inv : x — x71,

e the GF associated to the LRR A(G) is y(x) = 1, and correspond to
the trivial SB (G, -, -)
e the GF associated to the RRR p(G) is v(x) = ¢(x~1): and
correspond to the SB (G, -, -°PP)
More generally:

If N < Hol(G) is a regular subgroup corresponding to ~ then N is
another regular subgroup of Hol(G), which corresponds to

7)) = o(x (7Y
The two SB (G, ,0) and (G, -, 3) are dual to each other (see also

[KT20)).
©
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Proposition (Duality)

Let G be a non-abelian group, and C < G such that

e C cyclic and characteristic;
e CNZ(G)={1}

e additional technical hypothesis.

If 7 is a GF on G such that y(c) = t(ck) for every c € C, then

either C < ker(v) or C < ker(7).
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Proposition (Duality)

Let G be a non-abelian group, and C < G such that

e C cyclic and characteristic;
e CNZ(G)={1}

e additional technical hypothesis.

If 7 is a GF on G such that y(c) = t(ck) for every c € C, then

either C < ker(v) or C < ker(7).

Therefore, if v(C) C Inn(C), for all ~, then

e'(l,G)=|{yGFon G:(G,0)=T}|

=2{v GFon G:(G,o) =T and C < ker(y) }|.

oo

15



Example: HGS of degree pq

Let p > g be primes and assume g | p — 1 (the other case is trivial)

Theorem [Byo04] The numbers e(I', G) of Hopf-Galois structures of type
G on a I'-Galois extension of degree pq is

G
r Cpq Cp 2 Cq
Coq 1 2(q—1)
CoxCq | P 2(pg—2p+1)
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Example: HGS of degree pq

Let p > g be primes and assume g | p — 1 (the other case is trivial)

Theorem [Byo04] The numbers e(I', G) of Hopf-Galois structures of type
G on a I'-Galois extension of degree pq is

r ¢ o Cp 1 Cq
Cpq 1 2(q - 1)
CoxCq | P 2(pg—2p+1)

To prove this Theorem, we compute with the GF method the number
e'(l, G). Our goal is to find the following table

h ¢l e, C, % C,
Cpq 1 2p
CoxCq | g—1 2(pg—2p+1)

from which the previous theorem can be obtained by rescaling. 16



Let B =< b > be the Sylow p-subgroup of G and let v: G — Aut(G) be
a GF.

If ker(y) = G, we get the LRR, namely the trivial SB.
So assume ker(v) < G
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Let B =< b > be the Sylow p-subgroup of G and let v: G — Aut(G) be
a GF.

If ker(y) = G, we get the LRR, namely the trivial SB.
So assume ker(v) < G

If G =Cpq, then B < ker(7y), since in Aut(G) = Cp_1 x Cq_1 there are
no elements of order p.

If G =C, xCq, taking C = B in the Proposition duality, we get that one
between v and 4 has B in the kernel, so we can assume B < ker(), and
then double the result.

So, let ker(y) = B. Then |¥(G)| = q.

Our "homomorphism” theorem implies that
the GF on G are exactly the extensions of the RGF defined on a g-Sylow.

17



By Tool#3, we can define a RGF on a g-Sylow A =< a > of G

v: A= Aut(G)

arn

where 7 has order g, provided that A is v(A) invariant (1(A) = A).

If G =Cpq, then Ais the unique g-Sylow, so it is characteristic, and
a—a
n:
b— b
where s € C; has oder q. This gives g — 1 GF and for each of them

aoboa®t #£b

therefore (G, o) is non abelian.

18



If G =Cp, xCq, then - Aut(G) = Cp x Cp_q
-1 = u(x) for x € G of order q.

A =< a>is y(A)-invariant of and only if x = a° for s € {1,...,q — 1}.

Therefore, for each of the p choices of the g-Sylow there are g — 1
choices of n, so p(q — 1) GF's on G = C, x C,.

=b ifs=-1

ao oael:La a :L31+S
b ((a)(b) = u )(b){¢b o1

Summarizing: for each g-Sylow (p choices) the g — 1 GF give in 1 case
(G, 0) abelian, and in g — 2 cases (G, o) non abelian.

Recalling that, in this case we have to double the result we get

r ¢ G Cp xCq
o 1 2p
CoxCq | g—1 2(pg—2p+1)

19



(i) Forgtp—1:

a
r ! ’ ’
1T [p 2p(p - 1) 2p(p — 1)
2 | pe 2p(pg—29+1) 2pg(p — 1)
3 |pg 2palp—1)  20*¢—pg—q+1)
G
> 5 11
5 | p 2p(p" — 1)
11| p*q 2p(1+ qp® - 2q)

(ii) For gtp—land ¢ |p+ 1:

G
: 10
5 plp—1)(g—1)
10 24 20%(q - 3) —p +p*
(iii) Forgq|p—1:
[N !
) 2p(q - 1)
P 2% 27 +1)
Ifqg=2,
G
] ’? s !
5 [ ¥ 2(p+1) PBp+1)
6 | p* 2p(p+1) PBp+1)
7P 221 24p(p+)E2p-1)




If g =3,

G 5
R 5 6 7 9
5 I3 aplp+1) 2p(3p+ 1) aplp+1)
6 » 2p(p +3) Ap(p+1) P(3p+5)
7 »’ 2°(p+1)* 2+ 7207 +3p+2) pp+1)*
9 | pPP2p-1) 4p(p®+1) 2(2p°+3p*—2p+1) 24 2p+p*(p+3)
1fq>3,
G
r 5 6
5 P 2p(p+1)(g—1)
6 P 2p(p +2q - 3)
7 72+ g —2p+ 1)
8, Gs P Ap(p’ +pg—3p+1)
8. GGy | P> Ap(p* +pg—3p+1)
9 P A’ +pg—3p+1)
G
B 7 9
5 PBp+1)(g—1) 2p(p+1)(g—1)
6 4(p* +pg — 2p) p(dg+3p—T7)
7 24P 27 +pg+2g—4)  plp+1)(P*(2q - 5)+2p+1)
8, Gy 2p(p*q —4p +pg +2) P(p* +3p? — 14p + dpg — 6)
8, Gy Gy 4p(2p® — 5p + pg +2) P(p* + 5p* — 18p + dpq + 8)
9 204p* — 9 + 2%+ 2p +1) 2+ 4p +p*(p” + 5p + 4q — 16)
& G#Gas G~Gisg>5 G~Gog=5
5 ap(p+1)(g— 1) ap(p+1)(q — 1) 16p(p +1)
6  8la+p-2)  Bla+p-2) 8p(p+3)
T | 4P+ D(pg—3p+2) 4pPp+1)(pg—3p+2) 8p%(p+1)*
8 Table 2 Table 1 4(1+p+3p°(p+ 1))
9 | 8p(20° +pg—5p+2)) 4p(3p* +2pq—8p+3) 16p(2p* —2p+p+1)




Table 1: G and I of type 8, G >~ Gy, for k = £2,
r

ifqg>T:

G2
G, Gy

Gy
Gy # G2,G3,G3.Gy

2(1+5p +4p%q — 1797 + %)
2(Tp + dpPq — 18p% + Tp)

2(1 4 6p + 4p?q — 19p* + 8p*)

8(2p + p?q — 5p* + 2p*)

T ifg="1:

G 2(1+5p + 11p% + 7p%)

(e 2(1 + 4p + 13p* + 6p*)

Table 2: G'and T of type 8, G ~ G, # Gio

r if cither k or k™" is a solution of 22 —z — 1
G Gir 21+ 5p + 4pPq — 1707 + %)
Grix 4(3p + 2p%q — 8p* + 3p°)
Gy # Gy, Grak, Grk 8(2p + p*q — 5p° + 2p%)
r if ke and k™! are the solutions of % + x + 1 = 0:
G 2(1+6p + dp%q — 19p7 + 8p°)
Grog, Groj 2(7p + 4p?q — 18p* + Tp*)
Gk 21+ 4p + dpPq — 15p% + 6p*)

Gy # Ghy Grans Grog, Grj

8(2p + p*q — 5p* + 2p*)

r

if k and k= are the solutions of 2% — z +1 = 0:

Gk
Gk Gy

1k
Gy # Goiy Gioky Grahy Grypt

2(1 + 6p + 4p%q — 1997 + 8p%)
2(7p + dp*q — 18p* + 7p%)
2(1 + 4p + 4p*q — 15p + 6p°)
8(2p +p*q — 5p° + 2p%)

r

if k and k= are the solutions of 22 + 1 = 0:

[en A+ 2p+ 2p% — 997 + 4p%)
G, Cioi A(3p+2p%g = 8% + 3p°)
Gy % Gy, Gryn, G 8(2p +p*q — 5p* + 2p%)

T k2 # 4k 41,10

G Gy 2(1+6p + dp%q — 19p7 + 8p°)

Gk, Grpps Grok, G
Gs # G, Grak: Grag1

2(7p+ 4pq — 18p* + %)
8(2p +p*q — 5p* + 2p%)




Final remarks and a (silly?) question

e Lifting and restriction.@ In the literature there are many ways for
constructing SB, and our construction of GF give one more way. We
made a massive use of this argument and of duality. €
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e Sylow subgroups. & In the p?q case (p odd) the Sylow
subgroups of (G, ) and (G, o) are isomorphic, but this is not always
the case in general.

In our case, Sylow subgroups have another interesting property:
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e However, our general results are not enough for getting the
classification and we need to use a lot of ad hoc arguments.

e Isomorphism classes of SB of order p>q: we computed them and
our results agree with those of Acri and Bonatto.

e Sylow subgroups. & In the p?q case (p odd) the Sylow
subgroups of (G, ) and (G, o) are isomorphic, but this is not always
the case in general.

In our case, Sylow subgroups have another interesting property:

there is always ~(P)-invariant Sylow p-subgroup P, and a

~v(Q)-invariant Sylow g-subgroup Q (in the language of SB this

means that both P and Q are subSB).

Is this always the case or are there examples of SB for which none of

the Sylow p-subgroups of (G, -) is a Sylow p-subgroup of (G, o), for
some p? 23



Thank you!
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