University of Exeter

Skew bracoids and solutions to the Yang-Baxter

Ilaria Colazzo
I.Colazzo@exeter.ac.uk

August 3, 2023
SKEW BRACES, SKEW BRACOIDS,
AND HOPF-GALOIS THEORY

Solutions of the Yang-Baxter equation

A (set-theoretic) solution to the YBE is a pair (X, r) where X is a non-empty set and $r: X \times X \rightarrow X \times X$ is a map such that

$$
\begin{equation*}
(r \times \mathrm{id})(\mathrm{id} \times r)(r \times \mathrm{id})=(\mathrm{id} \times r)(r \times \mathrm{id})(\mathrm{id} \times r) \tag{*}
\end{equation*}
$$

Write $\quad r=\int$. Then $(*)$ becomes

Set-theoretic solutions to the Yang-Baxter equation

Let (X, r) be a solution to the YBE. Write

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

where $\lambda_{x}, \rho_{x}: X \rightarrow X$.

- (X, r) is bijective if r is bijective.
- (X, r) is involutive if $r^{2}=$ id.
- (X, r) is finite if X is finite.
- (X, r) is right non-degenerate (resp. left non-degenerate) if ρ_{X} (resp. λ_{x}) is bijective for all $x \in X$.
- (X, r) is non-degenerate if (X, r) is both left and right non-degenerate.

Examples

X a set.

- $r(x, y)=(x, y)$ is bijective degenerate solution.
- $r(x, y)=(y, x)$ is an bijective non-degenerate solution.
- λ, ρ maps of X. Then $r(x, y)=(\lambda(y), \rho(x))$ is a solution if and only if $\lambda \rho=\rho \lambda$.
Moreover, (X, r) is right non-degenerate if and only if g is a permutation of X.
Finally, (X, r) is bijective if and only if (X, r) is non-degenerate.

Examples

G a group

- $r(x, y)=(x y, 1)$ is a left non-degenerate solution.
- $r(x, y)=\left(y, y^{-1} x y\right)$ is a bijective non-degenerate solution.
- $r(x, y)=\left(x^{2} y, y^{-1} x^{-1} y\right)$ is a bijective non-degenerate solution.

A crucial example: Radical rings

[Rump, 2007]

Let $(R,+, \cdot)$ be a ring and put $x \circ y=x+x y+y$ for any $x, y \in R$. Then is radical if (R, \circ) is a group.

It $(R,+, \cdot)$ is a radical ring then

$$
r(x, y)=\left(-x+x \circ y,(-x+x \circ y)^{\prime} \circ x \circ y\right)
$$

is an involutive non-degenerate solution.

Skew braces

A skew brace is a triple $(B,+, \circ)$ such that $(B,+)$ and (B, \circ) are (not necessarily abelian) groups and the following holds

$$
a \circ(b+c)=a \circ b-a+a \circ c,
$$

for all $a, b, c \in B$.

- $(B,+)$ is the additive structure of $(B,+, \circ)$.
- (B, \circ) is the multiplicative structure of $(B,+, \circ)$.
- The map $\lambda: B \mapsto \operatorname{Aut}(B,+)$ such that $\lambda_{a}(b)=-a+a \circ b$ is called the λ-map.

Examples.

- Let $(G,+)$ be (any) group. Then $(G,+,+)$ and $\left(G,+{ }^{o p},+\right)$ are skew braces.
- Any radical ring is a skew brace.

Skew braces and solutions

Theorem [Guarnieri and Vendramin, 2017]

Let B be a skew brace. Define $r: B \times B \rightarrow B \times B$ by

$$
r(x, y)=r\left(-x+x \circ y,(-x+x \circ y)^{\prime} \circ x \circ y\right)
$$

where a^{\prime} denotes the inverse of a in $(B,+)$ Then r is a bijective non-degenerate solution of the YBE. Moreover,

$$
r \text { is involutive } \Longleftrightarrow(B,+) \text { is abelian. }
$$

The structure group

Let (X, r) be a solution and define the structure group of (X, r) as the group

$$
G(X, r)=\left\langle X: x y=\lambda_{x}(y) \rho_{y}(x)\right\rangle .
$$

The solution r "extends" to a solution on $G(X, r)$.

Let (X, r) be a solution. Then there exists a unique skew brace structure on $G(X, r)$ such that

$$
\begin{aligned}
& X \times X \longrightarrow X \times X \\
& \downarrow \iota \times \iota \quad \downarrow \iota \times \iota \\
& G(X, r) \times G(X, r) \xrightarrow{r_{G(X, r)}} G(X, r) \times G(X, r)
\end{aligned}
$$

where $\iota: X \mapsto G(X, r), x \mapsto x$ is the canonical map.
If $r^{2}=$ id then ι è injective.

Which is the connection between being non-degenerate and being bijective?

- Any finite involutive left non-degenerate solution is non-degenerate.
[Rump, 2005]
[Jespers and Okniński, 2005]
Note that $r(x, y)=(x, y)$ is involutive but clearly degenerate.
- An example of an infinite involutive solution that is left non-degenerate but not right non-degenerate. Namely, on \mathbb{Z}

$$
r(x, y)= \begin{cases}(y, x) & x, y \geq 0 \\ (y, x-y) & x \geq 0, y<0 \\ (x+y, x) & x<0, x+y \geq 0 \\ (x+y,-y) & x, x+y \geq 0\end{cases}
$$

[Rump, 2005]

- Any non-degenerate solution such that $\lambda_{x}=\lambda_{y}$ implies $x=y$ is bijective.
[Cedó, Jespers and Verwimp, 2021]
- Any finite bijective left non-degenerate solution is right non-degenerate.
[Castelli, Catino, Stefanelli, 2021]
- Any finite left non-degenerate solution is bijective if and only if it is right non-degenerate.
[IC, Jespers, Van Antwerpen, Verwimp, 2022]

Some construction for non bijective solutions:

- One can define a skew brace like structure, called a semibrace where the additive structure is a (left cancellative) semigroup and the multiplicative structure is a group. This will give rise to (left non-degenerate) solutions.
[Catino, IC, Stefanelli, 2017]
[Jespers, Van Antwerpen, 2018]
- One can define a skew brace like structure where the additive structure and the multiplicative structure monoids, called YB-semitrusses. YB-semitrusses play for left non-degenerate solutions the same role as skew braces play for non-degenerate bijective solutions.
[IC, Jespers, Van Antwerpen, Verwimp, 2022]

Connecting skew bracoids with solutions

A first attempt
We can construct a skew bracoid starting with a skew brace $(B,+, \circ)$ and a strong left ideal H. A strong left ideal I is a normal subgroup of $(B,+)$ which is λ invariant.

- For all $x \in B$ we have $x+H=x \circ H=x H$.
- The coset space B / H is a quotient group with respect to + , but not with respect to 0 .
- The group (B, \circ) acts transitively on B / H by $x \odot(y H)=(x \circ y) H$.
- We have

$$
\begin{aligned}
x \odot(y H+z H) & =(x \circ(y+z)) H \\
& =(x \circ y-x+x \circ z) H \\
& =(x \odot y H)-(x \circ e H)+(x \circ x H) .
\end{aligned}
$$

Let $(B,+, \circ)$ be a skew brace, and suppose that there exists a strong left ideal H and a subskew brace C such that

- $(B,+)=H \ltimes C$ and
- $(B, \circ)=H \circ C$.

Consider

- the skew bracoid $(B, \circ, B / H,+, \odot)$ and
- the homomorphism $\lambda: B \rightarrow \operatorname{Aut}(B / H,+)$.

We obtain a homomorphism

$$
\hat{\lambda}: B \rightarrow \operatorname{Hom}_{+}(B, C)
$$

Define $\hat{\rho}: B \rightarrow \operatorname{Perm}(B)$ by

$$
\hat{\lambda}_{x}(y) \circ \hat{\rho}_{y}(x)=x \circ y
$$

Theorem
The function $\hat{r}: B \times B \rightarrow B \times B$ defined by

$$
\hat{r}(x, y)=\left(\hat{\lambda}_{x}(y), \hat{\rho}_{y}(x)\right)
$$

is aleft degenerate and right non-degenerate solution.

Questions and final remarks

- Are the solutions associated to a skew bracoid related with solutions associated to semibraces?
- Can this construction be extended to a more general setting?
- By construction $\hat{\lambda}$ is a relative gamma function on H. Can we say more?

Thank you!!!

