

University of Exeter

Skew bracoids and solutions to the Yang–Baxter

Ilaria Colazzo

August 3, 2023 SKEW BRACES, SKEW BRACOIDS, AND HOPF–GALOIS THEORY

Solutions of the Yang-Baxter equation

A (set-theoretic) solution to the YBE is a pair (X, r) where X is a non-empty set and $r: X \times X \to X \times X$ is a map such that

$$(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r).$$
 (*)

Write
$$r =$$
 . Then (*) becomes

Set-theoretic solutions to the Yang-Baxter equation

Let (X, r) be a solution to the YBE. Write

 $r(x,y) = (\lambda_x(y), \rho_y(x))$

where $\lambda_x, \rho_x : X \to X$.

- (X, r) is bijective if r is bijective.
- (X, r) is involutive if $r^2 = id$.
- (X, r) is finite if X is finite.
- (X, r) is right non-degenerate (resp. left non-degenerate) if ρ_x (resp. λ_x) is bijective for all x ∈ X.
- (X, r) is non-degenerate if (X, r) is both left and right non-degenerate.

Examples

X a set.

- r(x,y) = (x,y) is bijective degenerate solution.
- r(x, y) = (y, x) is an bijective non-degenerate solution.
- λ, ρ maps of X. Then $r(x, y) = (\lambda(y), \rho(x))$ is a solution if and only if $\lambda \rho = \rho \lambda$.

Moreover, (X, r) is right non-degenerate if and only if g is a permutation of X.

Finally, (X, r) is bijective if and only if (X, r) is non-degenerate.

Examples

G a group

- r(x, y) = (xy, 1) is a left non-degenerate solution.
- $r(x, y) = (y, y^{-1}xy)$ is a bijective non-degenerate solution.
- r(x,y) = (x²y, y⁻¹x⁻¹y) is a bijective non-degenerate solution.

A crucial example: Radical rings [Rump, 2007]

Let $(R, +, \cdot)$ be a ring and put $x \circ y = x + xy + y$ for any $x, y \in R$. Then is radical if (R, \circ) is a group.

It $(R, +, \cdot)$ is a radical ring then

$$r(x,y) = (-x + x \circ y, (-x + x \circ y)' \circ x \circ y)$$

is an involutive non-degenerate solution.

Skew braces

A skew brace is a triple $(B, +, \circ)$ such that (B, +) and (B, \circ) are (not necessarily abelian) groups and the following holds

$$a\circ(b+c)=a\circ b-a+a\circ c,$$

for all $a, b, c \in B$.

- (B, +) is the additive structure of $(B, +, \circ)$.
- (B, \circ) is the multiplicative structure of $(B, +, \circ)$.
- The map λ : B → Aut(B, +) such that λ_a(b) = −a + a ∘ b is called the λ-map.

Examples.

- ▶ Let (G, +) be (any) group. Then (G, +, +) and (G, +^{op}, +) are skew braces.
- Any radical ring is a skew brace.

Skew braces and solutions

Theorem [Guarnieri and Vendramin, 2017]

Let *B* be a skew brace. Define $r : B \times B \rightarrow B \times B$ by

$$r(x,y) = r(-x + x \circ y, (-x + x \circ y)' \circ x \circ y),$$

where a' denotes the inverse of a in (B, +) Then r is a bijective non-degenerate solution of the YBE. Moreover,

r is involutive $\iff (B, +)$ is abelian.

Let (X, r) be a solution and define the structure group of (X, r) as the group

$$G(X, r) = \langle X \colon xy = \lambda_x(y)\rho_y(x) \rangle.$$

The solution r "extends" to a solution on G(X, r).

Let (X, r) be a solution. Then there exists a unique skew brace structure on G(X, r) such that

$$\begin{array}{ccc} X \times X & \xrightarrow{r} & X \times X \\ & \downarrow^{\iota \times \iota} & & \downarrow^{\iota \times \iota} \\ G(X,r) \times G(X,r) & \xrightarrow{r_{G(X,r)}} & G(X,r) \times G(X,r) \end{array}$$

where $\iota: X \mapsto G(X, r), x \mapsto x$ is the canonical map.

If $r^2 = id$ then ι è injective.

Which is the connection between being non-degenerate and being bijective?

 Any finite involutive left non-degenerate solution is non-degenerate.

[Rump, 2005]

[Jespers and Okniński, 2005]

Note that r(x, y) = (x, y) is involutive but clearly degenerate.

► An example of an infinite involutive solution that is left non-degenerate but not right non-degenerate. Namely, on Z

$$r(x,y) = \begin{cases} (y,x) & x,y \ge 0\\ (y,x-y) & x \ge 0, y < 0\\ (x+y,x) & x < 0, x+y \ge 0\\ (x+y,-y) & x, x+y \ge 0. \end{cases}$$

[Rump, 2005]

Any non-degenerate solution such that λ_x = λ_y implies x = y is bijective.

[Cedó, Jespers and Verwimp, 2021]

Any finite bijective left non-degenerate solution is right non-degenerate.

[Castelli, Catino, Stefanelli, 2021]

Any finite left non-degenerate solution is bijective if and only if it is right non-degenerate.

[IC, Jespers, Van Antwerpen, Verwimp, 2022]

Some construction for non bijective solutions:

One can define a skew brace like structure, called a semibrace where the additive structure is a (left cancellative) semigroup and the multiplicative structure is a group. This will give rise to (left non-degenerate) solutions.

[Catino, IC, Stefanelli, 2017]

[Jespers, Van Antwerpen, 2018]

One can define a skew brace like structure where the additive structure and the multiplicative structure monoids, called YB-semitrusses. YB-semitrusses play for left non-degenerate solutions the same role as skew braces play for non-degenerate bijective solutions.

[IC, Jespers, Van Antwerpen, Verwimp, 2022]

Connecting skew bracoids with solutions

A first attempt

We can construct a skew bracoid starting with a skew brace $(B, +, \circ)$ and a strong left ideal H. A strong left ideal I is a normal subgroup of (B, +) which is λ invariant.

For all $x \in B$ we have $x + H = x \circ H = xH$.

- ► The coset space B/H is a quotient group with respect to +, but not with respect to ∘.
- The group (B, \circ) acts transitively on B/H by $x \odot (yH) = (x \circ y)H$.

We have

$$\begin{aligned} x \odot (yH + zH) &= (x \circ (y + z))H \\ &= (x \circ y - x + x \circ z)H \\ &= (x \odot yH) - (x \circ eH) + (x \circ xH). \end{aligned}$$

Let $(B, +, \circ)$ be a skew brace, and suppose that there exists a strong left ideal H and a subskew brace C such that

•
$$(B,+) = H \ltimes C$$
 and

$$\blacktriangleright (B, \circ) = H \circ C.$$

Consider

- the skew bracoid $(B, \circ, B/H, +, \odot)$ and
- the homomorphism $\lambda : B \to Aut(B/H, +)$.

We obtain a homomorphism

$$\hat{\lambda}:B
ightarrow\mathsf{Hom}_+(B,C)$$

Define $\hat{\rho}: B \to \mathsf{Perm}(B)$ by

$$\hat{\lambda}_x(y) \circ \hat{\rho}_y(x) = x \circ y.$$

Theorem

The function $\hat{r}: B \times B \to B \times B$ defined by

$$\hat{r}(x,y) = (\hat{\lambda}_x(y), \hat{\rho}_y(x))$$

is aleft degenerate and right non-degenerate solution.

Questions and final remarks

- Are the solutions associated to a skew bracoid related with solutions associated to semibraces?
- Can this construction be extended to a more general setting?
- By construction $\hat{\lambda}$ is a relative gamma function on H. Can we say more?

Thank you!!!