An approach to a conjecture of Rump on quasi-linear cycle sets of prime cardinality

Nigel Byott

University of Exeter

Keele, 4 August 2023

§1 Quasi-linear Cycle Sets

Cycle sets were introduced by Rump (2016). There is a bijection between finite cycle sets and nondegenerate set-theoretic solutions of the Yang-Baxter Equation.

§1 Quasi-linear Cycle Sets

Cycle sets were introduced by Rump (2016). There is a bijection between finite cycle sets and nondegenerate set-theoretic solutions of the Yang-Baxter Equation.

Definition: A cycle set (X, \cdot) is a set with a binary operation such that

$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z) \qquad \forall x, y, z \in X$$

and, for each x, the function

$$\pi_X: X \to X, \qquad y \mapsto x \cdot y$$

is bijective.

§1 Quasi-linear Cycle Sets

Cycle sets were introduced by Rump (2016). There is a bijection between finite cycle sets and nondegenerate set-theoretic solutions of the Yang-Baxter Equation.

Definition: A cycle set (X, \cdot) is a set with a binary operation such that

$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z) \qquad \forall x, y, z \in X$$

and, for each x, the function

$$\pi_x: X \to X, \qquad y \mapsto x \cdot y$$

is bijective.

Defining $x \star y = z$ if $x \cdot z = y$, the corresponding solution is

$$r(x,y) = (x \star y, (x \star y) \cdot x).$$

One way to obtain a cycle set is from an abelian group with a suitable permutation:

One way to obtain a cycle set is from an abelian group with a suitable permutation:

Definition: Let (A, +) be an abelian group. Let $\tau \in Sym(A)$ and suppose that

- τ(0) = 0,
- the operation $\cdot = \cdot_{\tau}$ given by

$$a \cdot b = \tau(b-a) - \tau(-a)$$

makes A into a cycle set.

Then we say that (A, τ) is a **quasi-linear cycle set** (QLCS). This happens if and only if

$$\tau(\tau(b-a)-\tau(-a))=\tau(\tau(b)-\tau(a))-\tau(-\tau(a)) \text{ for all } a,b\in A.$$

This identity does hold if τ is a group automorphism, $\tau \in Aut_{gp}(A)$.

Rump conjectured that if (A, τ) is a finite QLCS then the corresponding solution is retractible. In particular, this means that if |A| > 1 then the subgroup

$$\operatorname{Soc}(A) = \{ b \in A : a \cdot b = 0 \cdot b \quad \forall a \in A \}$$

cannot be trivial.

When $\tau \in \operatorname{Aut}_{\operatorname{gp}}(A)$,

$$a\cdot_{ au}b= au(b-a)- au(-a)= au(b) \quad orall a,b\in A,$$

so Soc(A) = A.

In the special case that |A| is a prime number, Rump's conjecture amounts to the converse:

Rump conjectured that if (A, τ) is a finite QLCS then the corresponding solution is retractible. In particular, this means that if |A| > 1 then the subgroup

$$\operatorname{Soc}(A) = \{ b \in A : a \cdot b = 0 \cdot b \quad \forall a \in A \}$$

cannot be trivial.

When $\tau \in \operatorname{Aut}_{\operatorname{gp}}(A)$,

$$a\cdot_{ au}b= au(b-a)- au(-a)= au(b) \quad orall a,b\in A,$$

so Soc(A) = A.

In the special case that |A| is a prime number, Rump's conjecture amounts to the converse:

Conjecture 1 (Rump)

If (A, τ) is a QLCS of prime order p, then τ is a group automorphism of A.

Rump checked this for $p \leq 13$ and Colazzo & Vendramin did so up to $p \leq 23$.

Nigel Byott (University of Exeter)

An alternative viewpoint

Given an abelian group (A, +) and any permutation

$$\tau \in \operatorname{Sym}_{\mathbf{0}}(A) := \{ \pi \in \operatorname{Sym}(A) : \tau(\mathbf{0}) = \mathbf{0} \},\$$

define \cdot_{τ} as before:

$$a \cdot_{\tau} b = \tau(b-a) - \tau(-a).$$

Then (A, \cdot_{τ}) is a set with a binary operation and a distinguished element 0, i.e. (A, \cdot_{τ}) is a **pointed magma**.

An alternative viewpoint

Given an abelian group (A, +) and any permutation

$$\tau \in \operatorname{Sym}_{0}(A) := \{ \pi \in \operatorname{Sym}(A) : \tau(0) = 0 \},\$$

define \cdot_{τ} as before:

$$a \cdot_{\tau} b = \tau(b-a) - \tau(-a).$$

Then (A, \cdot_{τ}) is a set with a binary operation and a distinguished element 0, i.e. (A, \cdot_{τ}) is a **pointed magma**.

Some obvious properties:

- $a \cdot_{\tau} 0 = 0;$
- $0 \cdot_{\tau} b = \tau(b);$
- $a \cdot a = -\tau(-a) =: \widetilde{\tau}(a);$
- for each *a*, the map $\pi_a : b \mapsto a \cdot_{\tau} b$ is a permutation;
- τ is a group automorphism of $A \Leftrightarrow a \cdot_{\tau} b = \tau(b)$ for all a, b.

Let's consider the automorphisms of the pointed magma (A, \cdot_{τ}) :

$$\operatorname{Aut}_{\operatorname{pm}}(A,\tau) := \{ \sigma \in \operatorname{Sym}_{0}(A) : \sigma(a \cdot_{\tau} b) = \sigma(a) \cdot_{\tau} \sigma(b) \; \forall a, b \in A \}.$$

This is obviously a group (under composition of permutations).

For "most" permutations τ , we expect the operation \cdot_{τ} to be badly behaved and have few symmetries, so $\operatorname{Aut}_{pm}(A, \tau)$ should be "small".

Examples

Let $A = \mathbb{Z}/7\mathbb{Z}$. (i) $\tau = (134)(26)$.

	0	1	2	3	4	5	6	
0	0	3	6	4	1	5	2	$\pi_0 = \tau$
1	0	5	1	4	2	6	3	$\pi_1 = (156342)$
2	0	4	2	5	1	6	3	$\pi_2 = (14)(2)(356)$
3	0	4	1	6	2	5	3	$\pi_3 = (142)(36)(5)$
4	0	4	1	5	3	6	2	$\pi_4 = (143562)$
5	0	5	2	6	3	1	4	$\pi_5 = (15)(2)(364)$
6	0	3	1	5	2	6	4	$\pi_6 = (135642)$

Let $\sigma \in \operatorname{Aut}_{pm}(A, \tau)$. From π_2 , π_3 , π_5 we see $\sigma(2) = 2$, $\sigma(5) = 5$, etc.

 $\operatorname{Aut}_{\operatorname{pm}}(A,\tau) = \{\operatorname{id}\}.$

(ii) $\tau = (356)$.

	0	1	2	3	4	5	6	
0	0	1	2	5	4	6	3	$\pi_0 = \tau$
1	0	4	5	6	2	1	3	$\pi_1 = (1425)(36)$
2	0	4	1	2	3	6	5	$\pi_2 = (1432)(56)$
3	0	2	6	3	4	5	1	$\pi_3 = (126)(3)(4)(5)$
4	0	6	1	5	2	3	4	$\pi_4 = (1642)(35)$
5	0	3	2	4	1	5	6	$\pi_5 = (134)(2)(5)(6)$
6	0	1	4	3	5	2	6	$\pi_6 = (1)(245)(3)(6)$

We find

$$\operatorname{Aut}_{pm}(A, \tau) = \{ \operatorname{id}, (124)(365), (142)(356) \}.$$

In this case, $\operatorname{Aut}_{pm}(A, \tau)$ consists of group automorphisms of A which commute with τ .

Why should we care about $Aut_{pm}(A, \tau)$?

The condition for (A, τ) to be a QLCS

$$au(au(b-a)- au(-a))= au(au(b)- au(a))- au(- au(a))$$
 for all $a,b\in A$

says precisely that

$$\tau(a \cdot_{\tau} b) = \tau(a) \cdot_{\tau} \tau(b),$$

that is,

 $\tau \in \operatorname{Aut}_{\operatorname{pm}}(A, \tau).$

Why should we care about $Aut_{pm}(A, \tau)$?

The condition for (A, τ) to be a QLCS

$$au(au(b-a)- au(-a))= au(au(b)- au(a))- au(- au(a))$$
 for all $a,b\in A$

says precisely that

$$\tau(a \cdot_{\tau} b) = \tau(a) \cdot_{\tau} \tau(b),$$

that is,

$$au \in \operatorname{Aut}_{\operatorname{pm}}(A, au).$$

According to Conjecture 1, if |A| = p then this should only happen if $\tau \in \operatorname{Aut}_{\mathrm{gp}}(A)$.

Some easy results

Let (A, +) be an arbitrary abelian group, and let $\tau \in \text{Sym}_0(A)$. Define $\tilde{\tau}(a) = -\tau(-a)$.

Proposition 1

If $\sigma \in \operatorname{Aut}_{pm}(A, \tau)$ then $\sigma \tau = \tau \sigma$ and $\sigma \tilde{\tau} = \tilde{\tau} \sigma$.

Hence $\operatorname{Aut}_{pm}(A, \tau)$ is contained in the centraliser of $\langle \tau, \tilde{\tau} \rangle$ in $\operatorname{Sym}_0(A)$.

Some easy results

Let (A, +) be an arbitrary abelian group, and let $\tau \in \text{Sym}_0(A)$. Define $\tilde{\tau}(a) = -\tau(-a)$.

Proposition 1

If $\sigma \in \operatorname{Aut}_{pm}(A, \tau)$ then $\sigma \tau = \tau \sigma$ and $\sigma \tilde{\tau} = \tilde{\tau} \sigma$.

Hence $\operatorname{Aut}_{pm}(A, \tau)$ is contained in the centraliser of $\langle \tau, \tilde{\tau} \rangle$ in $\operatorname{Sym}_0(A)$.

Proof.

For all
$$a, b \in A$$
, we have $\sigma(a \cdot_{\tau} b) = \sigma(a) \cdot_{\tau} \sigma(b)$, so

$$\sigma(\tau(b-a)-\tau(-a))=\tau(\sigma(b)-\sigma(a))-\tau(-\sigma(a)).$$

Putting a = 0 and recalling $\sigma(0) = \tau(0) = 0$, we have $\sigma(\tau(b)) = \tau(\sigma(b))$. Putting b = a, we have $\sigma(-\tau(-a)) = -\tau(-\sigma(a))$, so $\sigma(\tilde{\tau}(a)) = \tilde{\tau}(\sigma(a))$.

$\sigma \in \operatorname{Aut}_{\operatorname{pm}}(A, \tau) \Leftrightarrow \tau \in \operatorname{Aut}_{\operatorname{pm}}(A, \sigma).$

$$\sigma \in \operatorname{Aut}_{\operatorname{pm}}(A, \tau) \Leftrightarrow \tau \in \operatorname{Aut}_{\operatorname{pm}}(A, \sigma).$$

Proof.

Suppose $\sigma \in \operatorname{Aut}_{pm}(A, \tau)$, so $\sigma(a \cdot_{\tau} b) = \sigma(a) \cdot_{\tau} \sigma(b) \ \forall a, b \in A$. Then

$$\sigma(\tau(b-a)-\tau(-a))=\tau(\sigma(b)-\sigma(a))-\tau(-\sigma(a)).$$

Put c = b - a, d = -a. For all c, $d \in A$, we have

$$\sigma(\tau(c) - \tau(d)) = \tau(\sigma(c - d) - \sigma(-d)) - \tau(-\sigma(-d)).$$

But $-\tau(-\sigma(-d)) = \widetilde{\tau}(\sigma(-d)) = \sigma(\widetilde{\tau}(-d)) = \sigma(-\tau(d))$. So

$$\sigma(\tau(c) - \tau(d)) - \sigma(-\tau(d)) = \tau(\sigma(c - d) - \sigma(-d)),$$

i.e. $\tau(d) \cdot_{\sigma} \tau(c) = \tau(d \cdot_{\sigma} c)$.

If $\sigma \tau = \tau \sigma$ and either $\sigma \in Aut_{gp}(A)$ or $\tau \in Aut_{gp}(A)$, then $\sigma \in Aut_{pm}(A, \tau)$.

So if $\tau \in Aut_{gp}(A)$ then

 $\operatorname{Aut}_{\operatorname{pm}}(A,\tau) = \{ \sigma \in \operatorname{Sym}_{0}(A) : \sigma\tau = \tau\sigma \}.$

If $\sigma \tau = \tau \sigma$ and either $\sigma \in Aut_{gp}(A)$ or $\tau \in Aut_{gp}(A)$, then $\sigma \in Aut_{pm}(A, \tau)$.

So if $\tau \in Aut_{gp}(A)$ then

$$\operatorname{Aut}_{\operatorname{pm}}(A, \tau) = \{ \sigma \in \operatorname{Sym}_{0}(A) : \sigma \tau = \tau \sigma \}.$$

Proof.

e.g. if $\sigma \in Aut_{gp}(A)$ then

1

$$\begin{aligned} \sigma(a \cdot \tau b) &= \sigma(\tau(b-a) - \tau(-a)) \\ &= \sigma(\tau(b-a)) - \sigma(\tau(-a)) \\ &= \tau(\sigma(b-a)) - \tau(\sigma(-a)) \\ &= \tau(\sigma(b) - \sigma(a)) - \tau(-\sigma(a)) \\ &= \sigma(a) \cdot \tau \sigma(b). \end{aligned}$$

A new conjecture

Conjecture 2

Let (A, +) be a finite group of prime order p, and let $\tau \in Sym_0(A)$. If $\tau \notin Aut_{gp}(A)$ then

$$\operatorname{Aut}_{\operatorname{pm}}(A, \tau) = \{ \sigma \in \operatorname{Aut}_{\operatorname{gp}}(A) : \sigma \tau = \tau \sigma \}.$$

Remarks

- (i) We have just proved the inclusion " \supseteq ".
- (ii) Conjecture 2 implies Conjecture 1: if $\tau \notin \operatorname{Aut_{gp}}(A)$ then $\tau \notin \operatorname{Aut_{pm}}(A, \tau)$.
- (iii) Conjecture 2 implies that if $\tau \notin \operatorname{Aut_{gp}}(A)$ then $\operatorname{Aut_{pm}}(A, \tau)$ is cyclic of order dividing p 1, and each element acts on $A \setminus \{0\}$ as a product of cycles of the same length.

I will give two pieces of evidence for Conjecture 2.

Definition

A (pointed) submagma of (A, \cdot_{τ}) is a subset $S \subseteq A$ such that $0 \in S$ and $a \cdot_{\tau} b \in S$ for all $a, b \in S$.

Definition

A (pointed) submagma of (A, \cdot_{τ}) is a subset $S \subseteq A$ such that $0 \in S$ and $a \cdot_{\tau} b \in S$ for all $a, b \in S$.

Since $0 \cdot_{\tau} b = \tau(b)$ and $a \cdot_{\tau} a = \tilde{\tau}(a)$, any submagma is a union of orbits of the group $\langle \tau, \tilde{\tau} \rangle \leq \text{Sym}_0(A)$.

Definition

A (pointed) submagma of (A, \cdot_{τ}) is a subset $S \subseteq A$ such that $0 \in S$ and $a \cdot_{\tau} b \in S$ for all $a, b \in S$.

Since $0 \cdot_{\tau} b = \tau(b)$ and $a \cdot_{\tau} a = \tilde{\tau}(a)$, any submagma is a union of orbits of the group $\langle \tau, \tilde{\tau} \rangle \leq \operatorname{Sym}_{0}(A)$.

Example: If $a \neq 0$ and $\tau(a) = a$, $\tau(-a) = -a$ then $a \cdot_{\tau} a = a$ and $(-a) \cdot_{\tau} (-a) = -a$. Hence $\{0, a\}$ is a submagma. Similarly for $\{0, -a\}$.

Definition

A (pointed) submagma of (A, \cdot_{τ}) is a subset $S \subseteq A$ such that $0 \in S$ and $a \cdot_{\tau} b \in S$ for all $a, b \in S$.

Since $0 \cdot_{\tau} b = \tau(b)$ and $a \cdot_{\tau} a = \tilde{\tau}(a)$, any submagma is a union of orbits of the group $\langle \tau, \tilde{\tau} \rangle \leq \operatorname{Sym}_{0}(A)$.

Example: If $a \neq 0$ and $\tau(a) = a$, $\tau(-a) = -a$ then $a \cdot_{\tau} a = a$ and $(-a) \cdot_{\tau} (-a) = -a$. Hence $\{0, a\}$ is a submagma. Similarly for $\{0, -a\}$.

Example: If $\tau \in \operatorname{Aut_{gp}}(A)$ then $\tilde{\tau} = \tau$ and $a \cdot_{\tau} b = \tau(b)$, so any union S of τ -orbits which includes 0 is a submagma. In fact, S is a (pointed left) ideal: $a \cdot_{\tau} b \in S$ for all $a \in A$, $b \in S$.

Definition

A (pointed) submagma of (A, \cdot_{τ}) is a subset $S \subseteq A$ such that $0 \in S$ and $a \cdot_{\tau} b \in S$ for all $a, b \in S$.

Since $0 \cdot_{\tau} b = \tau(b)$ and $a \cdot_{\tau} a = \tilde{\tau}(a)$, any submagma is a union of orbits of the group $\langle \tau, \tilde{\tau} \rangle \leq \operatorname{Sym}_{0}(A)$.

Example: If $a \neq 0$ and $\tau(a) = a$, $\tau(-a) = -a$ then $a \cdot_{\tau} a = a$ and $(-a) \cdot_{\tau} (-a) = -a$. Hence $\{0, a\}$ is a submagma. Similarly for $\{0, -a\}$.

Example: If $\tau \in \operatorname{Aut_{gp}}(A)$ then $\tilde{\tau} = \tau$ and $a \cdot_{\tau} b = \tau(b)$, so any union S of τ -orbits which includes 0 is a submagma. In fact, S is a (pointed left) ideal: $a \cdot_{\tau} b \in S$ for all $a \in A$, $b \in S$.

Apart from these two special cases, proper non-trivial submagmas seem to be fairly rare.

However, we have the following (easy) observation: If $\sigma \in \operatorname{Aut}_{\operatorname{pm}}(A, \tau)$ then

$$\operatorname{Fix}(\sigma) := \{ a \in A : \sigma(a) = a \}$$

is a submagma of (A, \cdot_{τ}) .

However, we have the following (easy) observation: If $\sigma \in \operatorname{Aut}_{pm}(A, \tau)$ then

$$\operatorname{Fix}(\sigma) := \{ a \in A : \sigma(a) = a \}$$

is a submagma of (A, \cdot_{τ}) .

Hence we have:

Theorem 1

If (A, \cdot_{τ}) has no nontrivial proper submagmas, then the stabiliser in $\operatorname{Aut}_{pm}(A, \tau)$ of any $a \in A \setminus \{0\}$ is $\{id\}$.

In particular, every element of $\operatorname{Aut_{pm}}(A, \tau)$ acts on $A \setminus \{0\}$ as a product of cycles of the same length, and $|\operatorname{Aut_{pm}}(A, \tau)|$ divides |A| - 1.

However, we have the following (easy) observation: If $\sigma \in \operatorname{Aut}_{pm}(A, \tau)$ then

$$\operatorname{Fix}(\sigma) := \{ a \in A : \sigma(a) = a \}$$

is a submagma of (A, \cdot_{τ}) .

Hence we have:

Theorem 1

If (A, \cdot_{τ}) has no nontrivial proper submagmas, then the stabiliser in $\operatorname{Aut}_{pm}(A, \tau)$ of any $a \in A \setminus \{0\}$ is $\{id\}$.

In particular, every element of $\operatorname{Aut_{pm}}(A, \tau)$ acts on $A \setminus \{0\}$ as a product of cycles of the same length, and $|\operatorname{Aut_{pm}}(A, \tau)|$ divides |A| - 1.

If |A| = p is prime and (A, \cdot_{τ}) has no nontrivial proper submagmas, then $\operatorname{Aut}_{pm}(A, \tau)$ at least "looks like" a subgroup of $\operatorname{Aut}_{gp}(A)$.

However, we have the following (easy) observation: If $\sigma \in \operatorname{Aut}_{pm}(A, \tau)$ then

$$\operatorname{Fix}(\sigma) := \{ a \in A : \sigma(a) = a \}$$

is a submagma of (A, \cdot_{τ}) .

Hence we have:

Theorem 1

If (A, \cdot_{τ}) has no nontrivial proper submagmas, then the stabiliser in $\operatorname{Aut}_{pm}(A, \tau)$ of any $a \in A \setminus \{0\}$ is $\{id\}$.

In particular, every element of $\operatorname{Aut_{pm}}(A, \tau)$ acts on $A \setminus \{0\}$ as a product of cycles of the same length, and $|\operatorname{Aut_{pm}}(A, \tau)|$ divides |A| - 1.

If |A| = p is prime and (A, \cdot_{τ}) has no nontrivial proper submagmas, then $\operatorname{Aut}_{pm}(A, \tau)$ at least "looks like" a subgroup of $\operatorname{Aut}_{gp}(A)$. If (A, \cdot_{τ}) does contain submagmas then any $\sigma \in \operatorname{Aut}_{pm}(A, \tau)$ must

preserve the lattice of submagmas, and this again severely restricts the possibilities for σ .

Nigel Byott (University of Exeter)

When au moves few elements

Fix $\tau \in \operatorname{Sym}_0(A)$, and let S be the support of $\widetilde{\tau}$:

$$S = \{a \in A : -\tau(-a) \neq a\}.$$

Suppose $\sigma \in \operatorname{Aut}_{pm}(A, \tau)$. If S is not too big, we can get some information about σ with no information about τ other than S. First observe that, since $\sigma \tilde{\tau} = \tilde{\tau} \sigma$, we have $\sigma(S) = S$.

Lemma

For each $b \in A$,

$$\sigma((b+S)\backslash S) = (\sigma(b)+S)\backslash S.$$

Proof.

Suppose $a \not\in S$, so $\tau(-a) = -a$ and $\tau(-\sigma(a)) = -\sigma(a)$. For $b \in A$,

$$a \cdot_{\tau} b = b \iff \tau(b-a) - \tau(-a) = b$$
$$\Leftrightarrow \tau(b-a) = b - a$$
$$\Leftrightarrow a - b \in S$$
$$\Leftrightarrow a \in b + S.$$

But also

$$egin{array}{lll} egin{array}{lll} egin{arra$$

So, for $a \notin S$, $a \in b + S \Leftrightarrow \sigma(a) \in \sigma(b) + S$. Thus $\sigma((b+S) \setminus S) = (\sigma(b) + S) \setminus \sigma(S) = (\sigma(b) + S) \setminus S$.

Theorem 2

Suppose |A| = p, and let $\tau = (a, b)$ be a transposition. Then

$$\operatorname{Aut}_{\operatorname{pm}}(A, \tau) = egin{cases} \{\operatorname{id}\} & \text{if } b \neq -a, \\ \{\operatorname{id}, \operatorname{inv}\} & \text{if } b = -a, \end{cases}$$

where inv(a) = -a. Thus Conjecture 2 holds for transpositions.

Proof.

We have $S = \{-a, -b\}$. Write out the sets c + S in the order

$$a + S, a + (a - b) + S, a + 2(a - b) + S, \dots, b + S,$$

and remove the intersections with S:

$$a+S = \{0, a-b\},\ a+(a-b)+S = \{a-b, 2(a-b)\},$$

÷

.

$$\begin{array}{rcl} & & & : & & & : \\ a+(p-2)(a-b)+S & & = & \{(p-2)(a-b), (p-1)(a-b)\}, \\ & & b+S & & = & \{(p-1)(a-b), 0\}. \end{array}$$

÷

.

$$\begin{array}{rcl} a+S & = & \{0,a-b\}, \\ a+(a-b)+S & = & \{a-b,2(a-b)\}, \\ \vdots & & \vdots \\ a+(j-1)(a-b)+S & = & \{b-2a,-a\}, \\ a+j(a-b)+S & = & \{-a,-b\}=S, \\ a+(j+1)(a-b)+S & = & \{-b,a-2b\}, \\ \vdots & & \vdots \\ a+(p-2)(a-b)+S & = & \{(p-2)(a-b),(p-1)(a-b)\}, \\ b+S & = & \{(p-1)(a-b),0\}. \end{array}$$

$$(a+S)\backslash S = \{0, a-b\},\$$

$$(a+(a-b)+S)\backslash S = \{a-b, 2(a-b)\},\$$

$$\vdots \qquad \vdots$$

$$(a+(j-1)(a-b)+S)\backslash S = \{b-2a, \ \},\$$

$$(a+j(a-b)+S)\backslash S = \{\ \}=S,\$$

$$(a+(j+1)(a-b)+S)\backslash S = \{\ ,a-2b\},\$$

$$\vdots \qquad \vdots$$

$$(a+(p-2)(a-b)+S)\backslash S = \{(p-2)(a-b),(p-1)(a-b)\},\$$

$$(b+S)\backslash S = \{(p-1)(a-b),0\}.$$

$$\begin{array}{rcl} (a+S)\backslash S &=& \{0,a-b\},\\ (a+(a-b)+S)\backslash S &=& \{a-b,2(a-b)\},\\ &\vdots&&\vdots\\ (a+(j-1)(a-b)+S)\backslash S &=& \{b-2a, \ \},\\ (a+j(a-b)+S)\backslash S &=& \{b-2a, \ \},\\ (a+j(a-b)+S)\backslash S &=& \{b-2a, \ \},\\ (a+(j+1)(a-b)+S)\backslash S$$

These sets are permuted by σ , so the two sets containing 0 are either fixed or swapped.

If they are fixed, $\sigma(a) = a$, $\sigma(a - b) = a - b$, $\sigma(a + (a - b)) = a + (a - b)$, etc, so $\sigma = \text{id}$. If they are swapped, $\sigma(a - b) = (p - 1)(a - b)$, etc, and the empty set must occur exactly in the middle, so b = -a and $\sigma = \text{inv}$. QED Nigel Byott (University of Exeter) Quasi-linear cycle sets Keele, 4 August 2023 19/19