
Lie trusses (with a bracoid aside)

Tomasz Brzeziński
(joint work with James Papworth)

Swansea University & University of Białystok

Keele, August 2023



Motivation

▶ In 2003 Grabowska, Grabowski and Urbański introduced
Lie brackets on affine spaces (part of the Tulczyjew
programme of frame-independent formulation of
dynamics).

▶ The definition of these brackets involve both an affine and
vector spaces.

▶ Is there a purely affine intrinsic theory of Lie affgebras?



Motivation

▶ In 2003 Grabowska, Grabowski and Urbański introduced
Lie brackets on affine spaces (part of the Tulczyjew
programme of frame-independent formulation of
dynamics).

▶ The definition of these brackets involve both an affine and
vector spaces.

▶ Is there a purely affine intrinsic theory of Lie affgebras?



Motivation

▶ In 2003 Grabowska, Grabowski and Urbański introduced
Lie brackets on affine spaces (part of the Tulczyjew
programme of frame-independent formulation of
dynamics).

▶ The definition of these brackets involve both an affine and
vector spaces.

▶ Is there a purely affine intrinsic theory of Lie affgebras?



Affine spaces (classically)
▶ In an affine space A over a vector space

→
A:

(a) any a, b ∈ A differ by a unique vector
−→
ab ;

(b) any point can be shifted by a vector to a (unique)
point, in particular, for all a, b, c ∈ A,

a+
−→
bc ∈ A;

(c) one can shift any pair of points by a rescaled
difference between them, i.e., for all a, b ∈ A and
λ ∈ F,

a+ λ
−→
ab ∈ A.

▶ An affine transformation (A,
→
A) to (B,

→
B) is a function

f : A → B which induces a linear transformation
f̂ :

→
A →

→
B such that

f̂
(−→
ab

)
=

−−−−−−−→
f(a)f(b) .



Affine spaces (classically)
▶ In an affine space A over a vector space

→
A:

(a) any a, b ∈ A differ by a unique vector
−→
ab ;

(b) any point can be shifted by a vector to a (unique)
point, in particular, for all a, b, c ∈ A,

a+
−→
bc ∈ A;

(c) one can shift any pair of points by a rescaled
difference between them, i.e., for all a, b ∈ A and
λ ∈ F,

a+ λ
−→
ab ∈ A.

▶ An affine transformation (A,
→
A) to (B,

→
B) is a function

f : A → B which induces a linear transformation
f̂ :

→
A →

→
B such that

f̂
(−→
ab

)
=

−−−−−−−→
f(a)f(b) .



Affine spaces (classically)
▶ In an affine space A over a vector space

→
A:

(a) any a, b ∈ A differ by a unique vector
−→
ab ;

(b) any point can be shifted by a vector to a (unique)
point, in particular, for all a, b, c ∈ A,

a+
−→
bc ∈ A;

(c) one can shift any pair of points by a rescaled
difference between them, i.e., for all a, b ∈ A and
λ ∈ F,

a+ λ
−→
ab ∈ A.

▶ An affine transformation (A,
→
A) to (B,

→
B) is a function

f : A → B which induces a linear transformation
f̂ :

→
A →

→
B such that

f̂
(−→
ab

)
=

−−−−−−−→
f(a)f(b) .



Affine spaces (classically)
▶ In an affine space A over a vector space

→
A:

(a) any a, b ∈ A differ by a unique vector
−→
ab ;

(b) any point can be shifted by a vector to a (unique)
point, in particular, for all a, b, c ∈ A,

a+
−→
bc ∈ A;

(c) one can shift any pair of points by a rescaled
difference between them, i.e., for all a, b ∈ A and
λ ∈ F,

a+ λ
−→
ab ∈ A.

▶ An affine transformation (A,
→
A) to (B,

→
B) is a function

f : A → B which induces a linear transformation
f̂ :

→
A →

→
B such that

f̂
(−→
ab

)
=

−−−−−−−→
f(a)f(b) .



Lie brackets on affine spaces (clasically) [GGU]

A Lie bracket on (A,
→
A) is an anti-symmetric bi-affine map

[−,−]v : A×A −→
→
A,

that satisfies the Jacobi identity in
→
A:

[̂a,[b, c]v]v + [̂b,[c, a]v]v + [̂c,[a, b]v]v = 0, (1)

where [̂a,−]v is the linearisation of the map [a,−]v etc



Key observation

In the definition of an affine space (A,
→
A), the vector space

→
A is

a secondary ingredient and can be got rid of completely.



Heaps [Prüfer ’24, Baer ’29]
A heap is a nonempty set A together with a ternary operation

⟨−,−,−⟩ : A×A×A → A,

such that for all ai ∈ A, i = 1, . . . , 5,

(a)
〈
⟨a1, a2, a3⟩, a4, a5

〉
=

〈
a1, a2, ⟨a3, a4, a5⟩

〉
,

(b) ⟨a1, a2, a2⟩ = a1 = ⟨a2, a2, a1⟩.

A heap A is abelian if ⟨a, b, c⟩ = ⟨c, b, a⟩.

Example. H ≤ G, A = Hx,〈
ax, bx, cx

〉
= ax(bx)−1cx = ab−1cx.

Homomorphism of heaps: a function f : A → B such that

f (⟨a1, a2, a3⟩) =
〈
f(a1), f(a2), f(a3)

〉
.



Heaps [Prüfer ’24, Baer ’29]
A heap is a nonempty set A together with a ternary operation

⟨−,−,−⟩ : A×A×A → A,

such that for all ai ∈ A, i = 1, . . . , 5,

(a)
〈
⟨a1, a2, a3⟩, a4, a5

〉
=

〈
a1, a2, ⟨a3, a4, a5⟩

〉
,

(b) ⟨a1, a2, a2⟩ = a1 = ⟨a2, a2, a1⟩.
A heap A is abelian if ⟨a, b, c⟩ = ⟨c, b, a⟩.

Example. H ≤ G, A = Hx,〈
ax, bx, cx

〉
= ax(bx)−1cx = ab−1cx.

Homomorphism of heaps: a function f : A → B such that

f (⟨a1, a2, a3⟩) =
〈
f(a1), f(a2), f(a3)

〉
.



Heaps [Prüfer ’24, Baer ’29]
A heap is a nonempty set A together with a ternary operation

⟨−,−,−⟩ : A×A×A → A,

such that for all ai ∈ A, i = 1, . . . , 5,

(a)
〈
⟨a1, a2, a3⟩, a4, a5

〉
=

〈
a1, a2, ⟨a3, a4, a5⟩

〉
,

(b) ⟨a1, a2, a2⟩ = a1 = ⟨a2, a2, a1⟩.
A heap A is abelian if ⟨a, b, c⟩ = ⟨c, b, a⟩.

Example. H ≤ G, A = Hx,〈
ax, bx, cx

〉
= ax(bx)−1cx = ab−1cx.

Homomorphism of heaps: a function f : A → B such that

f (⟨a1, a2, a3⟩) =
〈
f(a1), f(a2), f(a3)

〉
.



Heaps [Prüfer ’24, Baer ’29]
A heap is a nonempty set A together with a ternary operation

⟨−,−,−⟩ : A×A×A → A,

such that for all ai ∈ A, i = 1, . . . , 5,

(a)
〈
⟨a1, a2, a3⟩, a4, a5

〉
=

〈
a1, a2, ⟨a3, a4, a5⟩

〉
,

(b) ⟨a1, a2, a2⟩ = a1 = ⟨a2, a2, a1⟩.
A heap A is abelian if ⟨a, b, c⟩ = ⟨c, b, a⟩.

Example. H ≤ G, A = Hx,〈
ax, bx, cx

〉
= ax(bx)−1cx = ab−1cx.

Homomorphism of heaps: a function f : A → B such that

f (⟨a1, a2, a3⟩) =
〈
f(a1), f(a2), f(a3)

〉
.



Heaps are in ‘1-1’ correspondence with groups

▶ If (A,+) is an (abelian) group, then A is an (abelian) heap
with operation 〈

a, b, c
〉
= a− b+ c.

▶ Let A be an (abelian) heap. For all o ∈ A, A is an (abelian)
group (denoted by Ao) with addition and inverses

a+ b :=
〈
a, o, b

〉
, −a =

〈
o, a, o

〉
,

Converting this group to the heap gives back the
original heap operation, i.e. a− b+ c =

〈
a, b, c

〉
.

▶
Aut(A) ∼= Hol(Ao) = A⋊Aut(Ao),

f 7−→ (f(o), f − f(o)).



Heaps are in ‘1-1’ correspondence with groups

▶ If (A,+) is an (abelian) group, then A is an (abelian) heap
with operation 〈

a, b, c
〉
= a− b+ c.

▶ Let A be an (abelian) heap. For all o ∈ A, A is an (abelian)
group (denoted by Ao) with addition and inverses

a+ b :=
〈
a, o, b

〉
, −a =

〈
o, a, o

〉
,

Converting this group to the heap gives back the
original heap operation, i.e. a− b+ c =

〈
a, b, c

〉
.

▶
Aut(A) ∼= Hol(Ao) = A⋊Aut(Ao),

f 7−→ (f(o), f − f(o)).



Heaps are in ‘1-1’ correspondence with groups

▶ If (A,+) is an (abelian) group, then A is an (abelian) heap
with operation 〈

a, b, c
〉
= a− b+ c.

▶ Let A be an (abelian) heap. For all o ∈ A, A is an (abelian)
group (denoted by Ao) with addition and inverses

a+ b :=
〈
a, o, b

〉
, −a =

〈
o, a, o

〉
,

Converting this group to the heap gives back the
original heap operation, i.e. a− b+ c =

〈
a, b, c

〉
.

▶
Aut(A) ∼= Hol(Ao) = A⋊Aut(Ao),

f 7−→ (f(o), f − f(o)).



Heaps are in ‘1-1’ correspondence with groups

▶ If (A,+) is an (abelian) group, then A is an (abelian) heap
with operation 〈

a, b, c
〉
= a− b+ c.

▶ Let A be an (abelian) heap. For all o ∈ A, A is an (abelian)
group (denoted by Ao) with addition and inverses

a+ b :=
〈
a, o, b

〉
, −a =

〈
o, a, o

〉
,

Converting this group to the heap gives back the
original heap operation, i.e. a− b+ c =

〈
a, b, c

〉
.

▶
Aut(A) ∼= Hol(Ao) = A⋊Aut(Ao),

f 7−→ (f(o), f − f(o)).



Aside: heaps and bracoids

▶ Consider a group G acting (transitively) on a non-empty
heap A (eg. G ≤ H, A = Gh, g ▷ ah = gah).

▶ This means, for all g ∈ G, a, b, c ∈ A,

g ▷
〈
a, b, c

〉
=

〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ Pick any o ∈ A and consider the group Ao. Then

g ▷ (a+ b) = g ▷
〈
a, o, b

〉
=

〈
g ▷ a, g ▷ o, g ▷ b

〉
= g ▷ a− g ▷ o+ g ▷ b.

(G,Ao) is a bracoid.



Aside: heaps and bracoids

▶ Consider a group G acting (transitively) on a non-empty
heap A (eg. G ≤ H, A = Gh, g ▷ ah = gah).

▶ This means, for all g ∈ G, a, b, c ∈ A,

g ▷
〈
a, b, c

〉
=

〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ Pick any o ∈ A and consider the group Ao. Then

g ▷ (a+ b) = g ▷
〈
a, o, b

〉
=

〈
g ▷ a, g ▷ o, g ▷ b

〉
= g ▷ a− g ▷ o+ g ▷ b.

(G,Ao) is a bracoid.



Aside: heaps and bracoids

▶ Consider a group G acting (transitively) on a non-empty
heap A (eg. G ≤ H, A = Gh, g ▷ ah = gah).

▶ This means, for all g ∈ G, a, b, c ∈ A,

g ▷
〈
a, b, c

〉
=

〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ Pick any o ∈ A and consider the group Ao. Then

g ▷ (a+ b)

= g ▷
〈
a, o, b

〉
=

〈
g ▷ a, g ▷ o, g ▷ b

〉
= g ▷ a− g ▷ o+ g ▷ b.

(G,Ao) is a bracoid.



Aside: heaps and bracoids

▶ Consider a group G acting (transitively) on a non-empty
heap A (eg. G ≤ H, A = Gh, g ▷ ah = gah).

▶ This means, for all g ∈ G, a, b, c ∈ A,

g ▷
〈
a, b, c

〉
=

〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ Pick any o ∈ A and consider the group Ao. Then

g ▷ (a+ b) = g ▷
〈
a, o, b

〉

=
〈
g ▷ a, g ▷ o, g ▷ b

〉
= g ▷ a− g ▷ o+ g ▷ b.

(G,Ao) is a bracoid.



Aside: heaps and bracoids

▶ Consider a group G acting (transitively) on a non-empty
heap A (eg. G ≤ H, A = Gh, g ▷ ah = gah).

▶ This means, for all g ∈ G, a, b, c ∈ A,

g ▷
〈
a, b, c

〉
=

〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ Pick any o ∈ A and consider the group Ao. Then

g ▷ (a+ b) = g ▷
〈
a, o, b

〉
=

〈
g ▷ a, g ▷ o, g ▷ b

〉

= g ▷ a− g ▷ o+ g ▷ b.

(G,Ao) is a bracoid.



Aside: heaps and bracoids

▶ Consider a group G acting (transitively) on a non-empty
heap A (eg. G ≤ H, A = Gh, g ▷ ah = gah).

▶ This means, for all g ∈ G, a, b, c ∈ A,

g ▷
〈
a, b, c

〉
=

〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ Pick any o ∈ A and consider the group Ao. Then

g ▷ (a+ b) = g ▷
〈
a, o, b

〉
=

〈
g ▷ a, g ▷ o, g ▷ b

〉
= g ▷ a− g ▷ o+ g ▷ b.

(G,Ao) is a bracoid.



Aside: heaps and bracoids

▶ Consider a group G acting (transitively) on a non-empty
heap A (eg. G ≤ H, A = Gh, g ▷ ah = gah).

▶ This means, for all g ∈ G, a, b, c ∈ A,

g ▷
〈
a, b, c

〉
=

〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ Pick any o ∈ A and consider the group Ao. Then

g ▷ (a+ b) = g ▷
〈
a, o, b

〉
=

〈
g ▷ a, g ▷ o, g ▷ b

〉
= g ▷ a− g ▷ o+ g ▷ b.

(G,Ao) is a bracoid.



Aside: heaps and bracoids

▶ Let (G, ·, ▷,N,+) be a bracoid.

▶ Convert N into a heap with:
〈
a, b, c

〉
= a− b+ c.

▶ Note that: g ▷ (−b) = g ▷ eN − g ▷ b+ g ▷ eN .

▶

g ▷
〈
a, b, c

〉
= g ▷ (a− b+ c)

= g ▷ (a+ (−b))− g ▷ eN + g ▷ c

= g ▷ a− g ▷ eN + (g ▷ eN − g ▷ b+ g ▷ eN )− g ▷ eN + g ▷ c

= g ▷ a− g ▷ b+ g ▷ c =
〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ G acts (transitively) on N by heap automorphisms.



Aside: heaps and bracoids

▶ Let (G, ·, ▷,N,+) be a bracoid.
▶ Convert N into a heap with:

〈
a, b, c

〉
= a− b+ c.

▶ Note that: g ▷ (−b) = g ▷ eN − g ▷ b+ g ▷ eN .

▶

g ▷
〈
a, b, c

〉
= g ▷ (a− b+ c)

= g ▷ (a+ (−b))− g ▷ eN + g ▷ c

= g ▷ a− g ▷ eN + (g ▷ eN − g ▷ b+ g ▷ eN )− g ▷ eN + g ▷ c

= g ▷ a− g ▷ b+ g ▷ c =
〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ G acts (transitively) on N by heap automorphisms.



Aside: heaps and bracoids

▶ Let (G, ·, ▷,N,+) be a bracoid.
▶ Convert N into a heap with:

〈
a, b, c

〉
= a− b+ c.

▶ Note that: g ▷ (−b) = g ▷ eN − g ▷ b+ g ▷ eN .

▶

g ▷
〈
a, b, c

〉
= g ▷ (a− b+ c)

= g ▷ (a+ (−b))− g ▷ eN + g ▷ c

= g ▷ a− g ▷ eN + (g ▷ eN − g ▷ b+ g ▷ eN )− g ▷ eN + g ▷ c

= g ▷ a− g ▷ b+ g ▷ c =
〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ G acts (transitively) on N by heap automorphisms.



Aside: heaps and bracoids

▶ Let (G, ·, ▷,N,+) be a bracoid.
▶ Convert N into a heap with:

〈
a, b, c

〉
= a− b+ c.

▶ Note that: g ▷ (−b) = g ▷ eN − g ▷ b+ g ▷ eN .

▶

g ▷
〈
a, b, c

〉

= g ▷ (a− b+ c)

= g ▷ (a+ (−b))− g ▷ eN + g ▷ c

= g ▷ a− g ▷ eN + (g ▷ eN − g ▷ b+ g ▷ eN )− g ▷ eN + g ▷ c

= g ▷ a− g ▷ b+ g ▷ c =
〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ G acts (transitively) on N by heap automorphisms.



Aside: heaps and bracoids

▶ Let (G, ·, ▷,N,+) be a bracoid.
▶ Convert N into a heap with:

〈
a, b, c

〉
= a− b+ c.

▶ Note that: g ▷ (−b) = g ▷ eN − g ▷ b+ g ▷ eN .

▶

g ▷
〈
a, b, c

〉
= g ▷ (a− b+ c)

= g ▷ (a+ (−b))− g ▷ eN + g ▷ c

= g ▷ a− g ▷ eN + (g ▷ eN − g ▷ b+ g ▷ eN )− g ▷ eN + g ▷ c

= g ▷ a− g ▷ b+ g ▷ c =
〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ G acts (transitively) on N by heap automorphisms.



Aside: heaps and bracoids

▶ Let (G, ·, ▷,N,+) be a bracoid.
▶ Convert N into a heap with:

〈
a, b, c

〉
= a− b+ c.

▶ Note that: g ▷ (−b) = g ▷ eN − g ▷ b+ g ▷ eN .

▶

g ▷
〈
a, b, c

〉
= g ▷ (a− b+ c)

= g ▷ (a+ (−b))− g ▷ eN + g ▷ c

= g ▷ a− g ▷ eN + (g ▷ eN − g ▷ b+ g ▷ eN )− g ▷ eN + g ▷ c

= g ▷ a− g ▷ b+ g ▷ c =
〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ G acts (transitively) on N by heap automorphisms.



Aside: heaps and bracoids

▶ Let (G, ·, ▷,N,+) be a bracoid.
▶ Convert N into a heap with:

〈
a, b, c

〉
= a− b+ c.

▶ Note that: g ▷ (−b) = g ▷ eN − g ▷ b+ g ▷ eN .

▶

g ▷
〈
a, b, c

〉
= g ▷ (a− b+ c)

= g ▷ (a+ (−b))− g ▷ eN + g ▷ c

= g ▷ a− g ▷ eN + (g ▷ eN − g ▷ b+ g ▷ eN )− g ▷ eN + g ▷ c

= g ▷ a− g ▷ b+ g ▷ c =
〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ G acts (transitively) on N by heap automorphisms.



Aside: heaps and bracoids

▶ Let (G, ·, ▷,N,+) be a bracoid.
▶ Convert N into a heap with:

〈
a, b, c

〉
= a− b+ c.

▶ Note that: g ▷ (−b) = g ▷ eN − g ▷ b+ g ▷ eN .

▶

g ▷
〈
a, b, c

〉
= g ▷ (a− b+ c)

= g ▷ (a+ (−b))− g ▷ eN + g ▷ c

= g ▷ a− g ▷ eN + (g ▷ eN − g ▷ b+ g ▷ eN )− g ▷ eN + g ▷ c

= g ▷ a− g ▷ b+ g ▷ c =
〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ G acts (transitively) on N by heap automorphisms.



Aside: heaps and bracoids

▶ Let (G, ·, ▷,N,+) be a bracoid.
▶ Convert N into a heap with:

〈
a, b, c

〉
= a− b+ c.

▶ Note that: g ▷ (−b) = g ▷ eN − g ▷ b+ g ▷ eN .

▶

g ▷
〈
a, b, c

〉
= g ▷ (a− b+ c)

= g ▷ (a+ (−b))− g ▷ eN + g ▷ c

= g ▷ a− g ▷ eN + (g ▷ eN − g ▷ b+ g ▷ eN )− g ▷ eN + g ▷ c

= g ▷ a− g ▷ b+ g ▷ c =
〈
g ▷ a, g ▷ b, g ▷ c

〉
.

▶ G acts (transitively) on N by heap automorphisms.



Affine spaces (cd) [Breaz, TB, Rybołowicz, Saracco]

An affine space A is a heap with an F-action (λ, a, b) 7→ λ ▷a b,
such that
▶ − ▷a − is a bi-heap map,

▶ − ▷a b is associative,
▶ λ ▷a b =

〈
λ ▷c b, λ ▷c a, a

〉
,

▶ 0 ▷a b = a, 1 ▷a b = b.
Explicitly:

▶
〈
a, b, c

〉
= a+

−→
bc ;

▶ λ ▷a b := a+ λ
−→
ab .



Affine spaces (cd) [Breaz, TB, Rybołowicz, Saracco]

An affine space A is a heap with an F-action (λ, a, b) 7→ λ ▷a b,
such that
▶ − ▷a − is a bi-heap map,
▶ − ▷a b is associative,

▶ λ ▷a b =
〈
λ ▷c b, λ ▷c a, a

〉
,

▶ 0 ▷a b = a, 1 ▷a b = b.
Explicitly:

▶
〈
a, b, c

〉
= a+

−→
bc ;

▶ λ ▷a b := a+ λ
−→
ab .



Affine spaces (cd) [Breaz, TB, Rybołowicz, Saracco]

An affine space A is a heap with an F-action (λ, a, b) 7→ λ ▷a b,
such that
▶ − ▷a − is a bi-heap map,
▶ − ▷a b is associative,
▶ λ ▷a b =

〈
λ ▷c b, λ ▷c a, a

〉
,

▶ 0 ▷a b = a, 1 ▷a b = b.
Explicitly:

▶
〈
a, b, c

〉
= a+

−→
bc ;

▶ λ ▷a b := a+ λ
−→
ab .



Affine spaces (cd) [Breaz, TB, Rybołowicz, Saracco]

An affine space A is a heap with an F-action (λ, a, b) 7→ λ ▷a b,
such that
▶ − ▷a − is a bi-heap map,
▶ − ▷a b is associative,
▶ λ ▷a b =

〈
λ ▷c b, λ ▷c a, a

〉
,

▶ 0 ▷a b = a, 1 ▷a b = b.

Explicitly:

▶
〈
a, b, c

〉
= a+

−→
bc ;

▶ λ ▷a b := a+ λ
−→
ab .



Affine spaces (cd) [Breaz, TB, Rybołowicz, Saracco]

An affine space A is a heap with an F-action (λ, a, b) 7→ λ ▷a b,
such that
▶ − ▷a − is a bi-heap map,
▶ − ▷a b is associative,
▶ λ ▷a b =

〈
λ ▷c b, λ ▷c a, a

〉
,

▶ 0 ▷a b = a, 1 ▷a b = b.
Explicitly:

▶
〈
a, b, c

〉
= a+

−→
bc ;

▶ λ ▷a b := a+ λ
−→
ab .



Affine transformations revisited

Where is the vector space?

Fix an o ∈ A, then the abelian group Ao = (A,+, o) with scalar
multiplication:

αa = α ▷o a

is a vector space. A vector from a to b:
−→
ab =

〈
o, a, b

〉
.

An affine transformation f : A → B is a morphism of heaps
such that

f(λ ▷a b) = λ ▷f(a) f(b).

The corresponding linear transformation f̂ : Ao −→ Bo,

f̂(a) =
〈
f(a), f(oA), oB

〉
.



Affine transformations revisited

Where is the vector space?

Fix an o ∈ A, then the abelian group Ao = (A,+, o) with scalar
multiplication:

αa = α ▷o a

is a vector space.

A vector from a to b:
−→
ab =

〈
o, a, b

〉
.

An affine transformation f : A → B is a morphism of heaps
such that

f(λ ▷a b) = λ ▷f(a) f(b).

The corresponding linear transformation f̂ : Ao −→ Bo,

f̂(a) =
〈
f(a), f(oA), oB

〉
.



Affine transformations revisited

Where is the vector space?

Fix an o ∈ A, then the abelian group Ao = (A,+, o) with scalar
multiplication:

αa = α ▷o a

is a vector space. A vector from a to b:
−→
ab =

〈
o, a, b

〉
.

An affine transformation f : A → B is a morphism of heaps
such that

f(λ ▷a b) = λ ▷f(a) f(b).

The corresponding linear transformation f̂ : Ao −→ Bo,

f̂(a) =
〈
f(a), f(oA), oB

〉
.



Affine transformations revisited

Where is the vector space?

Fix an o ∈ A, then the abelian group Ao = (A,+, o) with scalar
multiplication:

αa = α ▷o a

is a vector space. A vector from a to b:
−→
ab =

〈
o, a, b

〉
.

An affine transformation f : A → B is a morphism of heaps
such that

f(λ ▷a b) = λ ▷f(a) f(b).

The corresponding linear transformation f̂ : Ao −→ Bo,

f̂(a) =
〈
f(a), f(oA), oB

〉
.



Affine transformations revisited

Where is the vector space?

Fix an o ∈ A, then the abelian group Ao = (A,+, o) with scalar
multiplication:

αa = α ▷o a

is a vector space. A vector from a to b:
−→
ab =

〈
o, a, b

〉
.

An affine transformation f : A → B is a morphism of heaps
such that

f(λ ▷a b) = λ ▷f(a) f(b).

The corresponding linear transformation f̂ : Ao −→ Bo,

f̂(a) =
〈
f(a), f(oA), oB

〉
.



Affine modules or heaps of modules
The ternary interpretation of affine spaces applies equally well
to modules.

A heap of modules over a ring R is a heap A with an R-action
(λ, a, b) 7→ λ ▷a b, such that
▶ − ▷a − is a bi-heap map,
▶ − ▷a b is associative,
▶ λ ▷a b =

〈
λ ▷c b, λ ▷c a, a

〉
,

A heap of R-modules is an affine R-module provided
▶ 0 ▷a b = a, 1 ▷a b = b.

Any abelian heap A is a Z-module in a unique way:

n ▷a b =
〈
b, a, b, a, . . . , a, b

〉︸ ︷︷ ︸
2n−1

.



Affine modules or heaps of modules
The ternary interpretation of affine spaces applies equally well
to modules.

A heap of modules over a ring R is a heap A with an R-action
(λ, a, b) 7→ λ ▷a b, such that
▶ − ▷a − is a bi-heap map,
▶ − ▷a b is associative,
▶ λ ▷a b =

〈
λ ▷c b, λ ▷c a, a

〉
,

A heap of R-modules is an affine R-module provided
▶ 0 ▷a b = a, 1 ▷a b = b.

Any abelian heap A is a Z-module in a unique way:

n ▷a b =
〈
b, a, b, a, . . . , a, b

〉︸ ︷︷ ︸
2n−1

.



Affine modules or heaps of modules
The ternary interpretation of affine spaces applies equally well
to modules.

A heap of modules over a ring R is a heap A with an R-action
(λ, a, b) 7→ λ ▷a b, such that
▶ − ▷a − is a bi-heap map,
▶ − ▷a b is associative,
▶ λ ▷a b =

〈
λ ▷c b, λ ▷c a, a

〉
,

A heap of R-modules is an affine R-module provided
▶ 0 ▷a b = a, 1 ▷a b = b.

Any abelian heap A is a Z-module in a unique way:

n ▷a b =
〈
b, a, b, a, . . . , a, b

〉︸ ︷︷ ︸
2n−1

.



Affine modules or heaps of modules
The ternary interpretation of affine spaces applies equally well
to modules.

A heap of modules over a ring R is a heap A with an R-action
(λ, a, b) 7→ λ ▷a b, such that
▶ − ▷a − is a bi-heap map,
▶ − ▷a b is associative,
▶ λ ▷a b =

〈
λ ▷c b, λ ▷c a, a

〉
,

A heap of R-modules is an affine R-module provided
▶ 0 ▷a b = a, 1 ▷a b = b.

Any abelian heap A is a Z-module in a unique way:

n ▷a b =
〈
b, a, b, a, . . . , a, b

〉︸ ︷︷ ︸
2n−1

.



Affine modules or heaps of modules
The ternary interpretation of affine spaces applies equally well
to modules.

A heap of modules over a ring R is a heap A with an R-action
(λ, a, b) 7→ λ ▷a b, such that
▶ − ▷a − is a bi-heap map,
▶ − ▷a b is associative,
▶ λ ▷a b =

〈
λ ▷c b, λ ▷c a, a

〉
,

A heap of R-modules is an affine R-module provided
▶ 0 ▷a b = a, 1 ▷a b = b.

Any abelian heap A is a Z-module in a unique way:

n ▷a b =
〈
b, a, b, a, . . . , a, b

〉︸ ︷︷ ︸
2n−1

.



Lie affgebras & Lie trusses

Definition
A (left) Lie bracket on an affine space A is a bi-affine map
[−,−] : A×A → A such that, for all a, b, c ∈ A,〈

[a, b], [a, a], [b, a]
〉
= [b, b], (2a)〈

[a, [b, c]], [a, a], [b, [c, a]], [b, b], [c, [a, b]]
〉
= [c, c] (2b)

An affine space with a Lie bracket is called a Lie affgebra.

Definition
In case A is an abelian heap (viewed as an affine Z-module)
with a Lie bracket we call A a Lie truss.



Lie affgebras & Lie trusses

Definition
A (left) Lie bracket on an affine space A is a bi-affine map
[−,−] : A×A → A such that, for all a, b, c ∈ A,〈

[a, b], [a, a], [b, a]
〉
= [b, b], (2a)〈

[a, [b, c]], [a, a], [b, [c, a]], [b, b], [c, [a, b]]
〉
= [c, c] (2b)

An affine space with a Lie bracket is called a Lie affgebra.

Definition
In case A is an abelian heap (viewed as an affine Z-module)
with a Lie bracket we call A a Lie truss.



Lie affgebras & Lie trusses

Definition
A (left) Lie bracket on an affine space A is a bi-affine map
[−,−] : A×A → A such that, for all a, b, c ∈ A,〈

[a, b], [a, a], [b, a]
〉
= [b, b], (2a)〈

[a, [b, c]], [a, a], [b, [c, a]], [b, b], [c, [a, b]]
〉
= [c, c] (2b)

An affine space with a Lie bracket is called a Lie affgebra.

Definition
In case A is an abelian heap (viewed as an affine Z-module)
with a Lie bracket we call A a Lie truss.



An example of a Lie truss

Example
Given an affine space (module) A and a scalar ζ,

[−,−] : A×A −→ A, [a, b] = ζ ▷a b,

is a Lie bracket on A.

Example
A (non-empty, abelian) heap A is a Lie truss with the brackets,
e.g.

[a, b] = ⟨a, b, a⟩ or [a, b] = ⟨b, a, b⟩.



An example of a Lie truss

Example
Given an affine space (module) A and a scalar ζ,

[−,−] : A×A −→ A, [a, b] = ζ ▷a b,

is a Lie bracket on A.

Example
A (non-empty, abelian) heap A is a Lie truss with the brackets,
e.g.

[a, b] = ⟨a, b, a⟩ or [a, b] = ⟨b, a, b⟩.



Relation to the GGU Lie affgebras

Theorem
Let A be an affine space over the field F (char(F) ̸= 2). For any
o ∈ A, there is a bijective correspondence between idempotent
Lie brackets on A and vector-valued Lie brackets on (A,Ao).

In one direction
[a, b]v = ⟨[a, b], b, o⟩,

while in the other
[a, b] = [a, b]v + b.



Relation to the GGU Lie affgebras

Theorem
Let A be an affine space over the field F (char(F) ̸= 2). For any
o ∈ A, there is a bijective correspondence between idempotent
Lie brackets on A and vector-valued Lie brackets on (A,Ao).
In one direction

[a, b]v = ⟨[a, b], b, o⟩,

while in the other
[a, b] = [a, b]v + b.



Associative affgebras and trusses

Definition
An affine space with a bi-affine multiplication is called an
affgebra.

An affine Z-module with a bi-affine multiplication is simply a
truss: i.e. an abelian heap with an associative multiplication
that distributes over the heap operation.



Associative affgebras and trusses

Definition
An affine space with a bi-affine multiplication is called an
affgebra.

An affine Z-module with a bi-affine multiplication is simply a
truss: i.e. an abelian heap with an associative multiplication
that distributes over the heap operation.



Lie affgebras of commutators

Theorem
An associative affgebra A is a Lie affgebra with the bracket

[a, b] = ⟨ab, ba, b⟩, (3)

for all a, b ∈ A.

For all a ∈ A, Da = [a,−] is a derivation on A along the identity.



Lie affgebras of commutators

Theorem
An associative affgebra A is a Lie affgebra with the bracket

[a, b] = ⟨ab, ba, b⟩, (3)

for all a, b ∈ A.

For all a ∈ A, Da = [a,−] is a derivation on A along the identity.



Lie affgebras from pre-Lie affgebras

Definition
A left pre-Lie affgebra is an affine space A together with the
bi-affine map · : A×A −→ A, such that, for all a, b, c ∈ A,

(a · b) · c =
〈
a · (b · c), b · (a · c), (b · a) · c

〉
. (4)

When written in terms of addition a+ b = ⟨a, o, b⟩, (4) coincide
exactly with the pre-Lie algebra conditions.

Theorem
Let (A, ·) be a right (or left) pre-Lie affgebra. Then A is a Lie
affgebra with the bracket

[a, b] = ⟨a · b, b · a, b⟩,

for all a, b ∈ A.



Lie affgebras from pre-Lie affgebras

Definition
A left pre-Lie affgebra is an affine space A together with the
bi-affine map · : A×A −→ A, such that, for all a, b, c ∈ A,

(a · b) · c =
〈
a · (b · c), b · (a · c), (b · a) · c

〉
. (4)

When written in terms of addition a+ b = ⟨a, o, b⟩, (4) coincide
exactly with the pre-Lie algebra conditions.

Theorem
Let (A, ·) be a right (or left) pre-Lie affgebra. Then A is a Lie
affgebra with the bracket

[a, b] = ⟨a · b, b · a, b⟩,

for all a, b ∈ A.



Lie affgebras from pre-Lie affgebras

Definition
A left pre-Lie affgebra is an affine space A together with the
bi-affine map · : A×A −→ A, such that, for all a, b, c ∈ A,

(a · b) · c =
〈
a · (b · c), b · (a · c), (b · a) · c

〉
. (4)

When written in terms of addition a+ b = ⟨a, o, b⟩, (4) coincide
exactly with the pre-Lie algebra conditions.

Theorem
Let (A, ·) be a right (or left) pre-Lie affgebra. Then A is a Lie
affgebra with the bracket

[a, b] = ⟨a · b, b · a, b⟩,

for all a, b ∈ A.



Derivations on affgebras/trusses

Definition
Let A be an affgebra (truss) and let σ : A → A be an affine
(heap) map s.t.

σ(ab) =
〈
σ(a)b, σ(ab), aσ(b)

〉
, for all a, b ∈ A. (5)

A derivation along σ is an affine (heap) map X : A → A, s.t.,

Xσ = σX, (6a)

X(ab) =
〈
X(a)b, σ(ab), aX(b)

〉
, for all a, b ∈ A. (6b)

The set of all derivations along σ on A is denoted by Derσ(A).



Lie bracket as a derivation

Theorem
Let L be a Lie affgebra (truss) with an idempotent bracket, that
is, such that, for all a ∈ L, [

a, a
]
= a.

Then, for all a ∈ L, Xa : L → L, b 7→ [a, b], is a derivation on L
along the identity.



Lie affgebras of derivations

Theorem
For an affgebra (truss) A, Derσ(A) is a Lie affgebra (truss) with
the affine structure arising from Aff(A) and the Lie bracket

[X,Y ] =
〈
XY, Y X, σ

〉
. (7)



Lie bracket as a derivation

Theorem
Let L be a Lie affgebra with an idempotent bracket. Then, for all
a ∈ L,

Xa : L −→ L, b 7−→ [a, b],

is a derivation of L along the identity.


