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Motivation

» In 2003 Grabowska, Grabowski and Urbanski introduced
Lie brackets on affine spaces (part of the Tulczyjew
programme of frame-independent formulation of

dynamics).

» The definition of these brackets involve both an affine and
vector spaces.

» Is there a purely affine intrinsic theory of Lie affgebras?
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Affine spaces (classically) .
» In an affine space A over a vector space A:

_)
(a) any a,b € A differ by a unique vector ab;

(b) any point can be shifted by a vector to a (unique)
point, in particular, for all a,b,c € A,

N
a+ be € A;

(c) one can shift any pair of points by a rescaled
difference between them, i.e., for all a,b € A and
A e,

_>
a+ Aab € A.
. . _> _)‘ . .
» An affine transformation (A, A) to (B, B) is a function
f : A — B which induces a linear transformation
N~ = —
f+ A — B such that

B

P(ab) = F@) ).



Lie brackets on affine spaces (clasically) [GGU]

5
A Lie bracket on (A, A) is an anti-symmetric bi-affine map
_>
[—,—]o: AXx A— A,

5
that satisfies the Jacobi identity in A:

— ~ ~

[av[bv C]v]v + [b7[c7 a]v]v + [C’[av b]v]v =0, (1)

—

where [a,—], is the linearisation of the map [a, —|, etc



Key observation

In the definition of an affine space (A, Z), the vector space Z is
a secondary ingredient and can be got rid of completely.
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Heaps [Prafer '24, Baer '29]

A heap is a nonempty set A together with a ternary operation
(—,— =) AXAXA— A,

suchthatforalla; € A,i=1,...,5,
(@) ((a1,a2,a3),a4,as5) = (a1, a2, (a3, as, as) ),
(b) (a1,az,a2) = a1 = {(ag, az,a1).

A heap A is abelian if (a,b,c) = (¢, b,a).
Example. H < G, A= Hz,

(az, bz, cx) = ax(bz) ez = ab™'ex.

Homomorphism of heaps: a function f : A — B such that

f (<a17a27a3>> = <f(a1)7 f(aQ)vf(a3)>'
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Heaps are in ‘1-1’ correspondence with groups

> If (A, +) is an (abelian) group, then A is an (abelian) heap
with operation
<a,b,c> =a—b+ec.

> Let A be an (abelian) heap. For all o € A, A is an (abelian)
group (denoted by A,) with addition and inverses

a+b:= <a,0,b>, —a:<o,a,o>,
Converting this group to the heap gives back the

original heap operation, i.e. a — b + ¢ = (a, b, ¢).

>
Aut(A) = Hol(A,) = A x Aut(A,),

fr—=(f(0), f = f(0)).
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Aside: heaps and bracoids

» Consider a group G acting (transitively) on a non-empty
heap A (eg. G < H, A = Gh, g ah = gah).

» This means, forallg € G, a,b,c € A,

gl><a,b,c>:<gl>a,gl>b,g>c>.

» Pick any o € A and consider the group A,. Then

g>(a+b)=gv{a,o0,b)=(g>a,gro,g>b)
=gpa—gbo+gnb.

(G, A,) is a bracoid.
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. heaps and bracoids

Let (G,-,>, N, +) be a bracoid.
Convert N into a heap with: (a,b,c) =a —b+c.
Note that: g> (—b) = g>reny —g> b+ g>en.

g>{a,b,c)y =g>(a—b+c)
=gp>(a+(-b) —greny+gprec
=gra—gbeny+ (gbeny —gbb+gbeny)—gbeny+g>c
:gba—g>b+gl>c:<gl>a,gl>b,gl>c>.

G acts (transitively) on N by heap automorphisms.
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Affine spaces (cd) [Breaz, TB, Rybotowicz, Saracco]

An affine space A is a heap with an F-action (X, a,b) — A, b,
such that

> —p, — is abi-heap map,
> — >, bis associative,
> Abg b= (Apcb,Abca,a),
> Obab=a, 1>, b=0.
Explicitly:
‘)
> <a,b,c> =a+ bc;

H
> Ap,b:=a+ \ab.
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Affine transformations revisited

Where is the vector space?

Fix an o € A, then the abelian group A4, = (A, +, 0) with scalar
multiplication:
aa=qab,a

H
is a vector space. A vector from a to b: ab = (o0, a,b).

An affine transformation f : A — B is a morphism of heaps
such that

J(ABa b) = Apyp(q) f(B).

The corresponding linear transformation f : A, — B,

f(a) = <f(a)’f(0A)voB>-
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Affine modules or heaps of modules
The ternary interpretation of affine spaces applies equally well
to modules.

A heap of modules over aring R is a heap A with an R-action
(A, a,b) — A, b, such that

> — 1, — is a bi-heap map,
» — >, bis associative,
> Abgb=(A>cb, Abca,a),

A heap of R-modules is an affine R-module provided
> O, b=a,1>,b=0.

Any abelian heap A is a Z-module in a unique way:

nbab:<b,a,b,a,...,a,b>.

2n—1




Lie affgebras & Lie trusses

Definition
A (left) Lie bracket on an affine space A is a bi-affine map
[—,—]: Ax A— Asuchthat, forall a,b,c € A,
(la,0], [a, a], [b,a]) = [b,0], (2a)
(la,,l], [a,a], [b, [esal], b, [e, [a, ] ) = [e ] (2b)

An affine space with a Lie bracket is called a Lie affgebra.



Lie affgebras & Lie trusses

Definition
A (left) Lie bracket on an affine space A is a bi-affine map
[—,—]: Ax A— Asuchthat, foralla,b,ce A,

<[a, b], [a, al, [b, a]> = [b, b], (2a)

(la,,l], [a,a], [b, [esal], b, [e, [a, ] ) = [e ] (2b)
An affine space with a Lie bracket is called a Lie affgebra.
Definition

In case A is an abelian heap (viewed as an affine Z-module)
with a Lie bracket we call A a Lie truss.



Lie affgebras & Lie trusses

Definition
A (left) Lie bracket on an affine space A is a bi-affine map
[—,—]: Ax A— Asuchthat, foralla,b,ce A,

<[a, b], [a, al, [b, a]> = [b, b], (2a)

(la,,l], [a,a], [b, [esal], b, [e, [a, ] ) = [e ] (2b)
An affine space with a Lie bracket is called a Lie affgebra.
Definition

In case A is an abelian heap (viewed as an affine Z-module)
with a Lie bracket we call A a Lie truss.



An example of a Lie truss

Example
Given an affine space (module) A and a scalar ¢,

[777]:AXA‘)A’ [aab]:CDaa

is a Lie bracket on A.



An example of a Lie truss

Example
Given an affine space (module) A and a scalar ¢,

[—,—]: Ax A— A, [a,b] = (>q b,

is a Lie bracket on A.

Example
A (non-empty, abelian) heap A is a Lie truss with the brackets,

e.g.
[a,b] = (a,b,a) or [a,b] = (b,a,b).
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Relation to the GGU Lie affgebras

Theorem
Let A be an affine space over the field F (char(F) # 2). For any
o € A, there is a bijective correspondence between idempotent
Lie brackets on A and vector-valued Lie brackets on (A, A,).
In one direction

[a,bl, = ([a,b],b,0),
while in the other

[a,b] = [a,b], + b.
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Associative affgebras and trusses

Definition
An affine space with a bi-affine multiplication is called an
affgebra.

An affine Z-module with a bi-affine multiplication is simply a
truss: i.e. an abelian heap with an associative multiplication
that distributes over the heap operation.
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Lie affgebras of commutators

Theorem
An associative affgebra A is a Lie affgebra with the bracket

[a,b] = (ab, ba,b), (3)
for all a,b € A.

Foralla € A, D, = [a,—] is a derivation on A along the identity.
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Lie affgebras from pre-Lie affgebras

Definition
A left pre-Lie affgebra is an affine space A together with the
bi-affine map - : A x A — A, such that, for all a,b,c € A,

(a-b)-c=(a-(b-¢c),b-(a-c),(b-a)-c). (4)

When written in terms of addition a + b = (a, 0, b), (4) coincide
exactly with the pre-Lie algebra conditions.

Theorem
Let (A,-) be aright (or left) pre-Lie affgebra. Then A is a Lie
affgebra with the bracket

[a,b] = (a-b,b-a,b),

foralla,b € A.



Derivations on affgebras/trusses

Definition
Let A be an affgebra (truss) and let 0 : A — A be an affine
(heap) map s.t.
o(ab) = (o(a)b,o(ab),ac(b)), foralla,b € A. (5)
A derivation along o is an affine (heap) map X : A — A, s.t.,
Xo=0X, (6a)
X (ab) = (X(a)b,o(ab),aX (b)), foralla,b e A. (6b)

The set of all derivations along o on A is denoted by Der,(A).



Lie bracket as a derivation

Theorem

Let L be a Lie affgebra (truss) with an idempotent bracket, that
is, such that, for all a € L,

[a, a] =aq.

Then, foralla € L, X, : L — L, b+ [a,b], is a derivation on L
along the identity.



Lie affgebras of derivations

Theorem
For an affgebra (truss) A, Der,(A) is a Lie affgebra (truss) with
the affine structure arising from Aff(A) and the Lie bracket

X, Y] =(XY,YX,0). (7)



Lie bracket as a derivation

Theorem

Let L be a Lie affgebra with an idempotent bracket. Then, for all
a€lL,

X,: L — L, b+— [a, ],

is a derivation of L along the identity.



