Lie trusses (with a bracoid aside)

Tomasz Brzeziński
(joint work with James Papworth)

Swansea University \& University of Białystok
Keele, August 2023

Motivation

- In 2003 Grabowska, Grabowski and Urbański introduced Lie brackets on affine spaces (part of the Tulczyjew programme of frame-independent formulation of dynamics).

Motivation

- In 2003 Grabowska, Grabowski and Urbański introduced Lie brackets on affine spaces (part of the Tulczyjew programme of frame-independent formulation of dynamics).
- The definition of these brackets involve both an affine and vector spaces.

Motivation

- In 2003 Grabowska, Grabowski and Urbański introduced Lie brackets on affine spaces (part of the Tulczyjew programme of frame-independent formulation of dynamics).
- The definition of these brackets involve both an affine and vector spaces.
- Is there a purely affine intrinsic theory of Lie affgebras?

Affine spaces (classically)

- In an affine space A over a vector space \vec{A} :
(a) any $a, b \in A$ differ by a unique vector $\overrightarrow{a b}$;

Affine spaces (classically)

- In an affine space A over a vector space \vec{A} :
(a) any $a, b \in A$ differ by a unique vector $\overrightarrow{a b}$;
(b) any point can be shifted by a vector to a (unique) point, in particular, for all $a, b, c \in A$,

$$
a+\overrightarrow{b c} \in A
$$

Affine spaces (classically)

- In an affine space A over a vector space \vec{A} :
(a) any $a, b \in A$ differ by a unique vector $\overrightarrow{a b}$;
(b) any point can be shifted by a vector to a (unique) point, in particular, for all $a, b, c \in A$,

$$
a+\overrightarrow{b c} \in A
$$

(c) one can shift any pair of points by a rescaled difference between them, i.e., for all $a, b \in A$ and $\lambda \in \mathbb{F}$,

$$
a+\lambda \overrightarrow{a b} \in A
$$

Affine spaces (classically)

- In an affine space A over a vector space \vec{A} :
(a) any $a, b \in A$ differ by a unique vector $\overrightarrow{a b}$;
(b) any point can be shifted by a vector to a (unique) point, in particular, for all $a, b, c \in A$,

$$
a+\overrightarrow{b c} \in A
$$

(c) one can shift any pair of points by a rescaled difference between them, i.e., for all $a, b \in A$ and $\lambda \in \mathbb{F}$,

$$
a+\lambda \overrightarrow{a b} \in A
$$

- An affine transformation (A, \vec{A}) to (B, \vec{B}) is a function $f: A \rightarrow B$ which induces a linear transformation $\hat{f}: \vec{A} \rightarrow \vec{B}$ such that

$$
\hat{f}(\overrightarrow{a b})=\overrightarrow{f(a) f(b)} .
$$

Lie brackets on affine spaces (clasically) [GGU]

A Lie bracket on (A, \vec{A}) is an anti-symmetric bi-affine map

$$
[-,-]_{v}: A \times A \longrightarrow \vec{A}
$$

that satisfies the Jacobi identity in \vec{A} :

$$
\begin{equation*}
\left.\left.\left.\widehat{[a,}[b, c]_{v}\right]_{v}+\widehat{[b},[c, a]_{v}\right]_{v}+\widehat{c c},[a, b]_{v}\right]_{v}=0 \tag{1}
\end{equation*}
$$

where $\widehat{[a,-]_{v}}$ is the linearisation of the map $[a,-]_{v}$ etc

Key observation

In the definition of an affine space (A, \vec{A}), the vector space \vec{A} is a secondary ingredient and can be got rid of completely.

Heaps [Prüfer '24, Baer '29]

A heap is a nonempty set A together with a ternary operation

$$
\langle-,-,-\rangle: A \times A \times A \rightarrow A,
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,
(a) $\left\langle\left\langle a_{1}, a_{2}, a_{3}\right\rangle, a_{4}, a_{5}\right\rangle=\left\langle a_{1}, a_{2},\left\langle a_{3}, a_{4}, a_{5}\right\rangle\right\rangle$,
(b) $\left\langle a_{1}, a_{2}, a_{2}\right\rangle=a_{1}=\left\langle a_{2}, a_{2}, a_{1}\right\rangle$.

Heaps [Prüfer '24, Baer '29]

A heap is a nonempty set A together with a ternary operation

$$
\langle-,-,-\rangle: A \times A \times A \rightarrow A,
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,
(a) $\left\langle\left\langle a_{1}, a_{2}, a_{3}\right\rangle, a_{4}, a_{5}\right\rangle=\left\langle a_{1}, a_{2},\left\langle a_{3}, a_{4}, a_{5}\right\rangle\right\rangle$,
(b) $\left\langle a_{1}, a_{2}, a_{2}\right\rangle=a_{1}=\left\langle a_{2}, a_{2}, a_{1}\right\rangle$.

A heap A is abelian if $\langle a, b, c\rangle=\langle c, b, a\rangle$.

Heaps [Prüfer '24, Baer '29]

A heap is a nonempty set A together with a ternary operation

$$
\langle-,-,-\rangle: A \times A \times A \rightarrow A
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,
(a) $\left\langle\left\langle a_{1}, a_{2}, a_{3}\right\rangle, a_{4}, a_{5}\right\rangle=\left\langle a_{1}, a_{2},\left\langle a_{3}, a_{4}, a_{5}\right\rangle\right\rangle$,
(b) $\left\langle a_{1}, a_{2}, a_{2}\right\rangle=a_{1}=\left\langle a_{2}, a_{2}, a_{1}\right\rangle$.

A heap A is abelian if $\langle a, b, c\rangle=\langle c, b, a\rangle$.
Example. $H \leq G, A=H x$,

$$
\langle a x, b x, c x\rangle=a x(b x)^{-1} c x=a b^{-1} c x .
$$

Heaps [Prüfer '24, Baer '29]

A heap is a nonempty set A together with a ternary operation

$$
\langle-,-,-\rangle: A \times A \times A \rightarrow A,
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,
(a) $\left\langle\left\langle a_{1}, a_{2}, a_{3}\right\rangle, a_{4}, a_{5}\right\rangle=\left\langle a_{1}, a_{2},\left\langle a_{3}, a_{4}, a_{5}\right\rangle\right\rangle$,
(b) $\left\langle a_{1}, a_{2}, a_{2}\right\rangle=a_{1}=\left\langle a_{2}, a_{2}, a_{1}\right\rangle$.

A heap A is abelian if $\langle a, b, c\rangle=\langle c, b, a\rangle$.
Example. $H \leq G, A=H x$,

$$
\langle a x, b x, c x\rangle=a x(b x)^{-1} c x=a b^{-1} c x .
$$

Homomorphism of heaps: a function $f: A \rightarrow B$ such that

$$
f\left(\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right)=\left\langle f\left(a_{1}\right), f\left(a_{2}\right), f\left(a_{3}\right)\right\rangle
$$

Heaps are in '1-1' correspondence with groups

- If $(A,+)$ is an (abelian) group, then A is an (abelian) heap with operation

$$
\langle a, b, c\rangle=a-b+c .
$$

Heaps are in '1-1' correspondence with groups

- If $(A,+)$ is an (abelian) group, then A is an (abelian) heap with operation

$$
\langle a, b, c\rangle=a-b+c .
$$

- Let A be an (abelian) heap. For all $o \in A, A$ is an (abelian) group (denoted by A_{o}) with addition and inverses

$$
a+b:=\langle a, o, b\rangle, \quad-a=\langle o, a, o\rangle
$$

Heaps are in '1-1' correspondence with groups

- If $(A,+)$ is an (abelian) group, then A is an (abelian) heap with operation

$$
\langle a, b, c\rangle=a-b+c .
$$

- Let A be an (abelian) heap. For all $o \in A, A$ is an (abelian) group (denoted by A_{o}) with addition and inverses

$$
a+b:=\langle a, o, b\rangle, \quad-a=\langle o, a, o\rangle,
$$

Converting this group to the heap gives back the original heap operation, i.e. $a-b+c=\langle a, b, c\rangle$.

Heaps are in '1-1' correspondence with groups

- If $(A,+)$ is an (abelian) group, then A is an (abelian) heap with operation

$$
\langle a, b, c\rangle=a-b+c .
$$

- Let A be an (abelian) heap. For all $o \in A, A$ is an (abelian) group (denoted by A_{o}) with addition and inverses

$$
a+b:=\langle a, o, b\rangle, \quad-a=\langle o, a, o\rangle,
$$

Converting this group to the heap gives back the original heap operation, i.e. $a-b+c=\langle a, b, c\rangle$.

$$
\begin{aligned}
\operatorname{Aut}(A) & \cong \operatorname{Hol}\left(A_{o}\right)=A \rtimes \operatorname{Aut}\left(A_{o}\right), \\
f & \longmapsto(f(o), f-f(o)) .
\end{aligned}
$$

Aside: heaps and bracoids

- Consider a group G acting (transitively) on a non-empty heap A (eg. $G \leq H, A=G h, g \triangleright a h=g a h)$.

Aside: heaps and bracoids

- Consider a group G acting (transitively) on a non-empty heap A (eg. $G \leq H, A=G h, g \triangleright a h=g a h$).
- This means, for all $g \in G, a, b, c \in A$,

$$
g \triangleright\langle a, b, c\rangle=\langle g \triangleright a, g \triangleright b, g \triangleright c\rangle .
$$

Aside: heaps and bracoids

- Consider a group G acting (transitively) on a non-empty heap A (eg. $G \leq H, A=G h, g \triangleright a h=g a h$).
- This means, for all $g \in G, a, b, c \in A$,

$$
g \triangleright\langle a, b, c\rangle=\langle g \triangleright a, g \triangleright b, g \triangleright c\rangle .
$$

- Pick any $o \in A$ and consider the group A_{o}. Then

$$
g \triangleright(a+b)
$$

Aside: heaps and bracoids

- Consider a group G acting (transitively) on a non-empty heap A (eg. $G \leq H, A=G h, g \triangleright a h=g a h$).
- This means, for all $g \in G, a, b, c \in A$,

$$
g \triangleright\langle a, b, c\rangle=\langle g \triangleright a, g \triangleright b, g \triangleright c\rangle .
$$

- Pick any $o \in A$ and consider the group A_{o}. Then

$$
g \triangleright(a+b)=g \triangleright\langle a, o, b\rangle
$$

Aside: heaps and bracoids

- Consider a group G acting (transitively) on a non-empty heap A (eg. $G \leq H, A=G h, g \triangleright a h=g a h$).
- This means, for all $g \in G, a, b, c \in A$,

$$
g \triangleright\langle a, b, c\rangle=\langle g \triangleright a, g \triangleright b, g \triangleright c\rangle .
$$

- Pick any $o \in A$ and consider the group A_{o}. Then

$$
g \triangleright(a+b)=g \triangleright\langle a, o, b\rangle=\langle g \triangleright a, g \triangleright o, g \triangleright b\rangle
$$

Aside: heaps and bracoids

- Consider a group G acting (transitively) on a non-empty heap A (eg. $G \leq H, A=G h, g \triangleright a h=g a h$).
- This means, for all $g \in G, a, b, c \in A$,

$$
g \triangleright\langle a, b, c\rangle=\langle g \triangleright a, g \triangleright b, g \triangleright c\rangle .
$$

- Pick any $o \in A$ and consider the group A_{o}. Then

$$
\begin{aligned}
g \triangleright(a+b) & =g \triangleright\langle a, o, b\rangle=\langle g \triangleright a, g \triangleright o, g \triangleright b\rangle \\
& =g \triangleright a-g \triangleright o+g \triangleright b .
\end{aligned}
$$

Aside: heaps and bracoids

- Consider a group G acting (transitively) on a non-empty heap A (eg. $G \leq H, A=G h, g \triangleright a h=g a h$).
- This means, for all $g \in G, a, b, c \in A$,

$$
g \triangleright\langle a, b, c\rangle=\langle g \triangleright a, g \triangleright b, g \triangleright c\rangle .
$$

- Pick any $o \in A$ and consider the group A_{o}. Then

$$
\begin{aligned}
g \triangleright(a+b) & =g \triangleright\langle a, o, b\rangle=\langle g \triangleright a, g \triangleright o, g \triangleright b\rangle \\
& =g \triangleright a-g \triangleright o+g \triangleright b .
\end{aligned}
$$

$\left(G, A_{o}\right)$ is a bracoid.

Aside: heaps and bracoids

- Let $(G, \cdot, \triangleright, N,+)$ be a bracoid.

Aside: heaps and bracoids

- Let $(G, \cdot, \triangleright, N,+)$ be a bracoid.
- Convert N into a heap with: $\langle a, b, c\rangle=a-b+c$.

Aside: heaps and bracoids

- Let $(G, \cdot, \triangleright, N,+)$ be a bracoid.
- Convert N into a heap with: $\langle a, b, c\rangle=a-b+c$.
- Note that: $g \triangleright(-b)=g \triangleright e_{N}-g \triangleright b+g \triangleright e_{N}$.

Aside: heaps and bracoids

- Let $(G, \cdot, \triangleright, N,+)$ be a bracoid.
- Convert N into a heap with: $\langle a, b, c\rangle=a-b+c$.
- Note that: $g \triangleright(-b)=g \triangleright e_{N}-g \triangleright b+g \triangleright e_{N}$.

$$
g \triangleright\langle a, b, c\rangle
$$

Aside: heaps and bracoids

- Let $(G, \cdot, \triangleright, N,+)$ be a bracoid.
- Convert N into a heap with: $\langle a, b, c\rangle=a-b+c$.
- Note that: $g \triangleright(-b)=g \triangleright e_{N}-g \triangleright b+g \triangleright e_{N}$.

$$
g \triangleright\langle a, b, c\rangle=g \triangleright(a-b+c)
$$

Aside: heaps and bracoids

- Let $(G, \cdot, \triangleright, N,+)$ be a bracoid.
- Convert N into a heap with: $\langle a, b, c\rangle=a-b+c$.
- Note that: $g \triangleright(-b)=g \triangleright e_{N}-g \triangleright b+g \triangleright e_{N}$.

$$
\begin{aligned}
& g \triangleright\langle a, b, c\rangle=g \triangleright(a-b+c) \\
& \quad=g \triangleright(a+(-b))-g \triangleright e_{N}+g \triangleright c
\end{aligned}
$$

Aside: heaps and bracoids

- Let $(G, \cdot, \triangleright, N,+)$ be a bracoid.
- Convert N into a heap with: $\langle a, b, c\rangle=a-b+c$.
- Note that: $g \triangleright(-b)=g \triangleright e_{N}-g \triangleright b+g \triangleright e_{N}$.

$$
\begin{aligned}
& g \triangleright\langle a, b, c\rangle=g \triangleright(a-b+c) \\
& \quad=g \triangleright(a+(-b))-g \triangleright e_{N}+g \triangleright c \\
& \quad=g \triangleright a-g \triangleright e_{N}+\left(g \triangleright e_{N}-g \triangleright b+g \triangleright e_{N}\right)-g \triangleright e_{N}+g \triangleright c
\end{aligned}
$$

Aside: heaps and bracoids

- Let $(G, \cdot, \triangleright, N,+)$ be a bracoid.
- Convert N into a heap with: $\langle a, b, c\rangle=a-b+c$.
- Note that: $g \triangleright(-b)=g \triangleright e_{N}-g \triangleright b+g \triangleright e_{N}$.

$$
\begin{aligned}
g \triangleright & \langle a, b, c\rangle=g \triangleright(a-b+c) \\
& =g \triangleright(a+(-b))-g \triangleright e_{N}+g \triangleright c \\
& =g \triangleright a-g \triangleright e_{N}+\left(g \triangleright e_{N}-g \triangleright b+g \triangleright e_{N}\right)-g \triangleright e_{N}+g \triangleright c \\
& =g \triangleright a-g \triangleright b+g \triangleright c=\langle g \triangleright a, g \triangleright b, g \triangleright c\rangle .
\end{aligned}
$$

Aside: heaps and bracoids

- Let $(G, \cdot, \triangleright, N,+)$ be a bracoid.
- Convert N into a heap with: $\langle a, b, c\rangle=a-b+c$.
- Note that: $g \triangleright(-b)=g \triangleright e_{N}-g \triangleright b+g \triangleright e_{N}$.

$$
\begin{aligned}
g \triangleright & \langle a, b, c\rangle=g \triangleright(a-b+c) \\
& =g \triangleright(a+(-b))-g \triangleright e_{N}+g \triangleright c \\
& =g \triangleright a-g \triangleright e_{N}+\left(g \triangleright e_{N}-g \triangleright b+g \triangleright e_{N}\right)-g \triangleright e_{N}+g \triangleright c \\
& =g \triangleright a-g \triangleright b+g \triangleright c=\langle g \triangleright a, g \triangleright b, g \triangleright c\rangle .
\end{aligned}
$$

- G acts (transitively) on N by heap automorphisms.

Affine spaces (cd) [Breaz, TB, Rybołowicz, Saracco]

An affine space A is a heap with an \mathbb{F}-action $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that
$-\triangleright_{a}$ - is a bi-heap map,

Affine spaces (cd) [Breaz, TB, Rybołowicz, Saracco]

An affine space A is a heap with an \mathbb{F}-action $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
$-\triangleright_{a} b$ is associative,

Affine spaces (cd) [Breaz, TB, Rybołowicz, Saracco]

An affine space A is a heap with an \mathbb{F}-action $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
$-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left\langle\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right\rangle$,

Affine spaces (cd) [Breaz, TB, Rybołowicz, Saracco]

An affine space A is a heap with an \mathbb{F}-action $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
$-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left\langle\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right\rangle$,
- $0 \triangleright_{a} b=a, 1 \triangleright_{a} b=b$.

Affine spaces (cd) [Breaz, TB, Rybołowicz, Saracco]

An affine space A is a heap with an \mathbb{F}-action $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
- $-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left\langle\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right\rangle$,
- $0 \triangleright_{a} b=a, 1 \triangleright_{a} b=b$.

Explicitly:

- $\langle a, b, c\rangle=a+\overrightarrow{b c}$;
- $\lambda \triangleright_{a} b:=a+\lambda \overrightarrow{a b}$.

Affine transformations revisited

Where is the vector space?

Affine transformations revisited

Where is the vector space?
Fix an $o \in A$, then the abelian group $A_{o}=(A,+, o)$ with scalar multiplication:

$$
\alpha a=\alpha \triangleright_{o} a
$$

is a vector space.

Affine transformations revisited

Where is the vector space?
Fix an $o \in A$, then the abelian group $A_{o}=(A,+, o)$ with scalar multiplication:

$$
\alpha a=\alpha \triangleright_{o} a
$$

is a vector space. A vector from a to $b: \overrightarrow{a b}=\langle o, a, b\rangle$.

Affine transformations revisited

Where is the vector space?
Fix an $o \in A$, then the abelian group $A_{o}=(A,+, o)$ with scalar multiplication:

$$
\alpha a=\alpha \triangleright_{o} a
$$

is a vector space. A vector from a to $b: \overrightarrow{a b}=\langle o, a, b\rangle$.
An affine transformation $f: A \rightarrow B$ is a morphism of heaps such that

$$
f\left(\lambda \triangleright_{a} b\right)=\lambda \triangleright_{f(a)} f(b)
$$

Affine transformations revisited

Where is the vector space?
Fix an $o \in A$, then the abelian group $A_{o}=(A,+, o)$ with scalar multiplication:

$$
\alpha a=\alpha \triangleright_{o} a
$$

is a vector space. A vector from a to $b: \overrightarrow{a b}=\langle o, a, b\rangle$.
An affine transformation $f: A \rightarrow B$ is a morphism of heaps such that

$$
f\left(\lambda \triangleright_{a} b\right)=\lambda \triangleright_{f(a)} f(b)
$$

The corresponding linear transformation $\hat{f}: A_{o} \longrightarrow B_{o}$,

$$
\hat{f}(a)=\left\langle f(a), f\left(o_{A}\right), o_{B}\right\rangle
$$

Affine modules or heaps of modules

The ternary interpretation of affine spaces applies equally well to modules.

Affine modules or heaps of modules

The ternary interpretation of affine spaces applies equally well to modules.

A heap of modules over a ring R is a heap A with an R-action $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that
$--\triangleright_{a}$ - is a bi-heap map,
$-\triangleright_{a} b$ is associative,

- $\lambda \triangleright_{a} b=\left\langle\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right\rangle$,

Affine modules or heaps of modules

The ternary interpretation of affine spaces applies equally well to modules.

A heap of modules over a ring R is a heap A with an R-action $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
$-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left\langle\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right\rangle$,

A heap of R-modules is an affine R-module provided

- $0 \triangleright_{a} b=a, 1 \triangleright_{a} b=b$.

Affine modules or heaps of modules

The ternary interpretation of affine spaces applies equally well to modules.

A heap of modules over a ring R is a heap A with an R-action $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
$-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left\langle\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right\rangle$,

A heap of R-modules is an affine R-module provided

- $0 \triangleright_{a} b=a, 1 \triangleright_{a} b=b$.

Affine modules or heaps of modules

The ternary interpretation of affine spaces applies equally well to modules.

A heap of modules over a ring R is a heap A with an R-action $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
$-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left\langle\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right\rangle$,

A heap of R-modules is an affine R-module provided

- $0 \triangleright_{a} b=a, 1 \triangleright_{a} b=b$.

Any abelian heap A is a \mathbb{Z}-module in a unique way:

$$
n \triangleright_{a} b=\underbrace{\langle b, a, b, a, \ldots, a, b\rangle}_{2 n-1}
$$

Lie affgebras \& Lie trusses

Definition
A (left) Lie bracket on an affine space A is a bi-affine map $[-,-]: A \times A \rightarrow A$ such that, for all $a, b, c \in A$,

$$
\begin{gather*}
\langle[a, b],[a, a],[b, a]\rangle=[b, b], \tag{2a}\\
\langle[a,[b, c]],[a, a],[b,[c, a]],[b, b],[c,[a, b]]\rangle=[c, c] \tag{2b}
\end{gather*}
$$

An affine space with a Lie bracket is called a Lie affgebra.

Lie affgebras \& Lie trusses

Definition
A (left) Lie bracket on an affine space A is a bi-affine map
$[-,-]: A \times A \rightarrow A$ such that, for all $a, b, c \in A$,

$$
\begin{gather*}
\langle[a, b],[a, a],[b, a]\rangle=[b, b], \tag{2a}\\
\langle[a,[b, c]],[a, a],[b,[c, a]],[b, b],[c,[a, b]]\rangle=[c, c] \tag{2b}
\end{gather*}
$$

An affine space with a Lie bracket is called a Lie affgebra.

Definition

In case A is an abelian heap (viewed as an affine \mathbb{Z}-module) with a Lie bracket we call A a Lie truss.

Lie affgebras \& Lie trusses

Definition
A (left) Lie bracket on an affine space A is a bi-affine map
$[-,-]: A \times A \rightarrow A$ such that, for all $a, b, c \in A$,

$$
\begin{gather*}
\langle[a, b],[a, a],[b, a]\rangle=[b, b], \tag{2a}\\
\langle[a,[b, c]],[a, a],[b,[c, a]],[b, b],[c,[a, b]]\rangle=[c, c] \tag{2b}
\end{gather*}
$$

An affine space with a Lie bracket is called a Lie affgebra.

Definition

In case A is an abelian heap (viewed as an affine \mathbb{Z}-module) with a Lie bracket we call A a Lie truss.

An example of a Lie truss

Example

Given an affine space (module) A and a scalar ζ,

$$
[-,-]: A \times A \longrightarrow A, \quad[a, b]=\zeta \triangleright_{a} b
$$

is a Lie bracket on A.

An example of a Lie truss

Example

Given an affine space (module) A and a scalar ζ,

$$
[-,-]: A \times A \longrightarrow A, \quad[a, b]=\zeta \triangleright_{a} b,
$$

is a Lie bracket on A.

Example

A (non-empty, abelian) heap A is a Lie truss with the brackets, e.g.

$$
[a, b]=\langle a, b, a\rangle \quad \text { or } \quad[a, b]=\langle b, a, b\rangle
$$

Relation to the GGU Lie affgebras

Theorem
Let A be an affine space over the field $\mathbb{F}(\operatorname{char}(\mathbb{F}) \neq 2)$. For any $o \in A$, there is a bijective correspondence between idempotent Lie brackets on A and vector-valued Lie brackets on (A, A_{o}).

Relation to the GGU Lie affgebras

Theorem
Let A be an affine space over the field $\mathbb{F}(\operatorname{char}(\mathbb{F}) \neq 2)$. For any $o \in A$, there is a bijective correspondence between idempotent Lie brackets on A and vector-valued Lie brackets on (A, A_{o}). In one direction

$$
[a, b]_{v}=\langle[a, b], b, o\rangle
$$

while in the other

$$
[a, b]=[a, b]_{v}+b
$$

Associative affgebras and trusses

Definition
An affine space with a bi-affine multiplication is called an affgebra.

Associative affgebras and trusses

Definition
An affine space with a bi-affine multiplication is called an affgebra.

An affine \mathbb{Z}-module with a bi-affine multiplication is simply a truss: i.e. an abelian heap with an associative multiplication that distributes over the heap operation.

Lie affgebras of commutators

Theorem
An associative affgebra A is a Lie affgebra with the bracket

$$
\begin{equation*}
[a, b]=\langle a b, b a, b\rangle, \tag{3}
\end{equation*}
$$

for all $a, b \in A$.

Lie affgebras of commutators

Theorem
An associative affgebra A is a Lie affgebra with the bracket

$$
\begin{equation*}
[a, b]=\langle a b, b a, b\rangle, \tag{3}
\end{equation*}
$$

for all $a, b \in A$.
For all $a \in A, D_{a}=[a,-]$ is a derivation on A along the identity.

Lie affgebras from pre-Lie affgebras

Definition
A left pre-Lie affgebra is an affine space A together with the bi-affine map $\cdot: A \times A \longrightarrow A$, such that, for all $a, b, c \in A$,

$$
\begin{equation*}
(a \cdot b) \cdot c=\langle a \cdot(b \cdot c), b \cdot(a \cdot c),(b \cdot a) \cdot c\rangle . \tag{4}
\end{equation*}
$$

Lie affgebras from pre-Lie affgebras

Definition

A left pre-Lie affgebra is an affine space A together with the bi-affine map $\cdot: A \times A \longrightarrow A$, such that, for all $a, b, c \in A$,

$$
\begin{equation*}
(a \cdot b) \cdot c=\langle a \cdot(b \cdot c), b \cdot(a \cdot c),(b \cdot a) \cdot c\rangle . \tag{4}
\end{equation*}
$$

When written in terms of addition $a+b=\langle a, o, b\rangle$, (4) coincide exactly with the pre-Lie algebra conditions.

Lie affgebras from pre-Lie affgebras

Definition

A left pre-Lie affgebra is an affine space A together with the bi-affine map $\cdot: A \times A \longrightarrow A$, such that, for all $a, b, c \in A$,

$$
\begin{equation*}
(a \cdot b) \cdot c=\langle a \cdot(b \cdot c), b \cdot(a \cdot c),(b \cdot a) \cdot c\rangle . \tag{4}
\end{equation*}
$$

When written in terms of addition $a+b=\langle a, o, b\rangle$, (4) coincide exactly with the pre-Lie algebra conditions.
Theorem
Let (A, \cdot) be a right (or left) pre-Lie affgebra. Then A is a Lie affgebra with the bracket

$$
[a, b]=\langle a \cdot b, b \cdot a, b\rangle
$$

for all $a, b \in A$.

Derivations on affgebras/trusses

Definition

Let A be an affgebra (truss) and let $\sigma: A \rightarrow A$ be an affine (heap) map s.t.

$$
\begin{equation*}
\sigma(a b)=\langle\sigma(a) b, \sigma(a b), a \sigma(b)\rangle, \quad \text { for all } a, b \in A . \tag{5}
\end{equation*}
$$

A derivation along σ is an affine (heap) map $X: A \rightarrow A$, s.t.,

$$
\begin{gather*}
X \sigma=\sigma X, \tag{6a}\\
X(a b)=\langle X(a) b, \sigma(a b), a X(b)\rangle, \quad \text { for all } a, b \in A . \tag{6b}
\end{gather*}
$$

The set of all derivations along σ on A is denoted by $\operatorname{Der}_{\sigma}(A)$.

Lie bracket as a derivation

Theorem
Let L be a Lie affgebra (truss) with an idempotent bracket, that is, such that, for all $a \in L$,

$$
[a, a]=a
$$

Then, for all $a \in L, X_{a}: L \rightarrow L, b \mapsto[a, b]$, is a derivation on L along the identity.

Lie affgebras of derivations

Theorem
For an affgebra (truss) $A, \operatorname{Der}_{\sigma}(A)$ is a Lie affgebra (truss) with the affine structure arising from $\operatorname{Aff}(A)$ and the Lie bracket

$$
\begin{equation*}
[X, Y]=\langle X Y, Y X, \sigma\rangle . \tag{7}
\end{equation*}
$$

Lie bracket as a derivation

Theorem
Let L be a Lie affgebra with an idempotent bracket. Then, for all $a \in L$,

$$
X_{a}: L \longrightarrow L, \quad b \longmapsto[a, b],
$$

is a derivation of L along the identity.

