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1. Introduction

Let p be a prime number, let n be an integer, n ≥ 1, and let Fq denote
the Galois field with q = pn elements. Let t be an indeterminate, let
R = Fq[[t]] and let K = Frac(R) = Fq((t)). R is a local ring with
maximal ideal (t); an element x ∈ K can be written as x = uti for
some unit u ∈ R, and some i ∈ Z. The (t)-order of x is ord(x) = i.

Let Cp × Cp denote the elementary abelian group of order p2 with
σ, τ generating the left and right copies of Cp. Let Cp×Cp → Cp denote
the canonical surjection defined by σ 7→ 1. For integers i, j ≥ 0, there
are Hopf (Larson) orders in KCp given as

H(i) = R

[
σ − 1

ti

]
, H(j) = R

[
τ − 1

tj

]
.

Suppose µ ∈ K is so that ord(µ) ≥ −i+(j/p). Then there is an R-Hopf
order in K(Cp × Cp) of the form

H(i, j, µ) = R

[
σ − 1

ti
,
σ[−µ]τ − 1

tj

]
,

with

σ[−µ] =

p−1∑
m=0

(
−µ
m

)
(σ − 1)m,

called an Elder order in K(Cp × Cp) [2].
The Elder order H(i, j, µ) induces a short exact sequence of R-Hopf

orders
R→ H(i)→ H(i, j, µ)→ H(j)→ R,
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or equivalently, a short exact sequence of R-group schemes

0→ SpecH(j)→ SpecH(i, j, µ)→ SpecH(i)→ 0. (1)

Sequence (1) represents an equivalence class in Ext1(SpecH(i), SpecH(j)),
the group of 1-extensions of SpecH(j) by SpecH(i). Over K elements
of Ext1(SpecH(i), SpecH(j)) appear as

0→ µpµp,K → µpµp,K × µpµp,K → µpµp,K → 0

where µpµp,K denotes the multiplicative group of the p roots of unity over
K. So to compute Hopf orders in K(Cp×Cp) (including those of Elder
type) we ought to compute the group of extensions Ext1(SpecH(i), SpecH(j)).

Unfortunately, the direct computation of this group is too difficult.
The problem is somewhat easier if we consider the linear duals of H(i)
and H(j).

In this paper we compute the elements in Ext1(SpecH(j)∗, SpecH(i)∗)
which over K appear as

0→ Cp,K → Cp,K ×Cp,K → Cp,K → 0,

where Cp,K is the constant group scheme of Cp over K. These are the
generically trivial extensions, denoted as Ext1

gt(SpecH(j)∗, SpecH(i)∗).
We then compute the representing algebras of the middle terms of these
generically trivial extensions, take their duals, and show that these du-
als are Elder orders in K(Cp×Cp). We follow the method of C. Greither
[3, Part I] where the author has solved the analogous problem in the
characteristic 0 case. Here is our main result (Proposition 3.9.)

Main Theorem. Let H be an arbitrary R-Hopf order in K(Cp × Cp)
that induces the short exact sequence

R→ H(i)→ H → H(j)→ R.

Then H is an Elder order in K(Cp × Cp).

We begin with some preliminary results concerning the Larson order
H(i).

2. Larson Orders in KCp

Let G be a finite group of order n whose elements are listed as
1 = g0, g1, . . . , gn−1. Let T be a commutative ring with unity. Then
the group ring TG is a T -Hopf algebra with comultiplication ∆TG :
TG → TG ⊗T TG defined as gk 7→ gk ⊗ gk, counit εTG : TG → T
defined by gk 7→ 1 and coinverse STG : TG → TG given by gk 7→ g−1

k ,
for 0 ≤ k ≤ n − 1. Note that B = {g0, g1, . . . , gn−1} is a T -basis for
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TG. Let TG∗ = HomT (TG, T ) denote the T -module of T -linear maps
TG→ T (the linear dual of TG.) Let {e0, e1, . . . , en−1} be the basis of
TG∗ dual to the basis B, that is, 〈el, gk〉 = el(gk) = δl,k, with

〈 , 〉 : TG∗ × TG→ T

the duality map.

Proposition 2.1. TG∗ is a T -Hopf algebra.

Proof. The T -algebra structure of TG∗ is induced from the T -coalgebra
structure of TG: the dual basis {e0, e1, . . . , en−1} is a collection of min-
imal idempotents and consequently

TG∗ =
n−1⊕
m=0

Tem ∼= T n,

as T -algebras. The T -coalgebra structure of TG∗ is induced from the
T -algebra structure of TG: comultiplication is defined by

∆TG∗(em) =
∑

gm=gagb

ea ⊗ eb

and the counit map is defined as εTG∗(em) = δm,0. The coinverse
map for TG∗ is the transpose of the coinverse of TG, and is given
by STG∗(em) = en with gn = g−1

m , cf. [1, §1.4].
�

Applying Proposition 2.1 to the case T = K, G = Cp, we see that
KC∗p is a K-Hopf algebra. Let H(i) = R

[
σ−1
ti

]
, i ≥ 0, be a Larson

order in KCp and let H(i)∗ = HomR(H(i), R) denote the R-module of
R-linear maps H(i)→ R, the linear dual of H(i).

Proposition 2.2. For i ≥ 0, H(i)∗ = R
[
σ−1
ti

]∗
is an R-Hopf order in

KC∗p .

Proof. Since H(i) = R
[
σ−1
ti

]
is an R-submodule of KCp, free of rank

p over R, H(i)∗ = R
[
σ−1
ti

]∗
is an R-submodule of KC∗p , free of rank

p over R. Morover, since H(i) is invariant under the comultiplication
of KCp, H(i)∗ is closed under the multiplication of KC∗p . Moreover,
KH(i)∗ = KC∗p , and so H(i)∗ is an R-order in KC∗p .

Furthermore, since H(i) is closed under the multiplication of KCp,
H(i)∗ is invariant under the comultiplication of KC∗p . Thus H(i)∗ is
an R-Hopf order in KC∗p .

�

Proposition 2.3. For i ≥ 0, H(i)∗ = R
[
σ−1
ti

]∗
is an R-Hopf algebra

with Hopf algebra structure induced from KC∗p .
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Proof. From Proposition 2.2, we know thatH(i)∗ is anR-algebra. Since
H(i)∗ is an R-Hopf order in KC∗p , the comultiplication for H(i)∗ is
the restriction of ∆KCp∗ to H(i)∗. Since the counit map εKC∗p is the
transpose of the unit map λKCp , the counit map εKC∗p restricts to give
a map H(i)∗ → R, which we take to be the counit map of H(i)∗. Since
the coinverse map SKC∗p is the transpose of the coninverse map SKCp ,
the coninverse map restricts to give a map H(i)∗ → H(i)∗, which we
take to be the coninverse of H(i)∗. Thus H(i)∗ is an R-Hopf algebra
with structure maps induced from KC∗p .

�

One has an inclusion

RCp = R[σ − 1] ⊆ R

[
σ − 1

ti

]
,

and so there is an inclusion of linear duals

R

[
σ − 1

ti

]∗
⊆ RC∗p .

By Proposition 2.1, RC∗p =
⊕p−1

m=0Rem
∼= Rp, and soH(i)∗ ⊆

⊕p−1
m=0Rem

∼=
Rp. An R-basis for R

[
σ−1
ti

]∗
can therefore be obtained in terms of the

em.
There is a symmetric non-degenerate bilinear form on KC∗p

B : KC∗p ×KC∗p → K

defined as B(x, y) =
∑p−1

m=0 σ
m(xy). Here σm is considered as an ele-

ment of the double dual KC∗∗p = KCp. For an R-order A in KCp∗ , free
of rank p on the basis {b1, b2, . . . , bp}, we define

disc(A/R) = R det(B(bm, bn)).

Proposition 2.4. An R-basis for H(i)∗ = R
[
σ−1
ti

]∗
is of the form

{1, β, β2, . . . , βp−1} where

β = tie1 + 2tie2 + · · ·+ (p− 1)tiep−1.

Thus H(i)∗ = R[β] with βp = t(p−1)iβ.

Proof. An R-basis for H(i) = R
[
σ−1
ti

]
is{

1,
σ − 1

ti
,

(
σ − 1

ti

)2

, . . . ,

(
σ − 1

ti

)p−1
}
.

For 0 ≤ k, l ≤ p− 1, let

vk,l =

{ (
k
l

)
tli if k ≥ l

0 if k < l.
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Then 〈
v0,ke0 + v1,ke1 + · · ·+ vp−1,kep−1,

(
σ − 1

ti

)l〉
= δk,l.

Thus, with respect to the basis E = {e0, e1, . . . , ep−1} for RC∗p , H(i)∗

has a basis consisting of the columns of the p× p matrix

ME =



(
0
0

)
0 0 0 0 · · · 0(

1
0

) (
1
1

)
ti 0 0 0 · · · 0(

2
0

) (
2
1

)
ti

(
2
2

)
t2i 0 0 · · · 0

...
. . .

...(
p−1

0

) (
p−1

1

)
ti
(
p−1

2

)
t2i · · · · · ·

(
p−1
p−1

)
t(p−1)i


.

Put

β =

(
1

1

)
tie1 +

(
2

1

)
tie2 + · · ·+

(
p− 1

1

)
tiep−1

= tie1 + 2tie2 + · · ·+ (p− 1)tiep−1.

Now, βp = t(p−1)iβ. We claim that R[β] = H(i)∗. Certainly, R[β] ⊆
H(i)∗. We show equality by showing that

disc(H(i)∗/R) = disc(R[β]/R).

Note that disc(RC∗p/R) = R. One has that the module index

[RC∗p : H(i)∗] = R det(MT
E )

= Rt(1+2+···+(p−1))i

= Rtp(p−1)i/2,

and so,

disc(H(i)∗/R) = [RC∗p : H(i)∗]2disc(RC∗p/R)

= Rtp(p−1)i.

On the other hand, {1, β, β2, . . . , βp−1} is a an R-basis for R[β] and
its basis matrix with respect to E is
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NE =


1 0 0 · · · 0
1 ti (ti)2 · · · (ti)p−1

1 2ti (2ti)2 · · · (2ti)p−1

...
...

1 (p− 1)ti ((p− 1)ti)2 · · · ((p− 1)ti)p−1

 .

Since NE is Vandermonde,

det(NE) =

p−1∏
k=1

p−k−1∏
l=0

((p− k)ti − lti)

= t((p−1)+(p−2)+···+2+1)i

p−1∏
k=1

p−k−1∏
l=0

(p− k − l)

= qtp(p−1)i/2

where q is an integer not divisible by p. Consequently,

disc(R[β]/R) = [RC∗p : R[β]]2disc(RC∗p/R)

= Rtp(p−1)i

= disc(H(i)∗).

�

Proposition 2.5. The Hopf algebra structure of H(i)∗ = R[β], βp =
t(p−1)iβ, is given by ∆KC∗p (β) = 1 ⊗ β + β ⊗ 1, εKC∗p (β) = 0, and
SKC∗p (β) = −β.

Proof. Let ∆ = ∆KC∗p . By direct computation, one has

∆KC∗p (β) = ti∆(e1) + 2ti∆(e2) + · · ·+ (p− 1)ti∆(ep−1)

= ti

( ∑
σ=σaσb

σa ⊗ σb
)

+ 2ti

( ∑
σ2=σaσb

σa ⊗ σb
)

+ · · ·+ (p− 1)ti

( ∑
σp−1=σaσb

σa ⊗ σb
)

= (e0 + e1 + · · ·+ ep−1)⊗ (tie1 + 2tie2 + · · ·+ (p− 1)tiep−1)

+ (tie1 + 2tie2 + · · ·+ (p− 1)tiep−1)⊗ (e0 + e1 + · · ·+ ep−1)

= 1⊗ β + β ⊗ 1.

Moreover, as one can check, εKC∗p (β) = 0, and SKC∗p (β) = −β. �
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Let X be an indeterminate. The ring of polynomials R[X] is R-Hopf
algebra with comultiplication defined by ∆R[X](X) = 1 ⊗X + X ⊗ 1,
counit defined by εR[X](X) = 0 and coinverse given by SK[X](X) = −X.
The R-Hopf algebra R[X] corresponds to the R-group scheme Ga =
SpecR[X], the additive R-group scheme. Let ψ(X) = Xp − t(p−1)iX.
The map ψ : R[X] → R[X] is a homomorphism of R-Hopf algebras
corresponding to a homomorphism of R-group schemes

Ψ : Ga → Ga,

defined as follows. For each commutative R-algebra A, g ∈ Ga(A),
g(X) = a, a ∈ A,

ΨA(g)(X) = g(ψ(X))

= g(Xp − t(p−1)iX)

= g(X)p − t(p−1)ig(X)

= ap − t(p−1)ia.

Observe that there is an isomorphism of R-Hopf algebras

R[X]/(ψ(X))→ H(i)∗,

defined as X 7→ β. Thus the kernel of Ψ is a subgroup scheme repre-
sented by H(i)∗. One has an exact sequence of R-group schemes,

0→ SpecH(i)∗ → Ga
Ψ→ Ga.

In fact, in the faithfully flat topology we can say a bit more.

Proposition 2.6. There is a short exact sequence

0→ SpecH(i)∗ → Ga
Ψ→ Ga → 0 (2)

in the faithfully flat topology.

Proof. Let A be a commutative R-algebra and let y ∈ Ga(A) be defined
as y : X 7→ a, a ∈ A. Let α be a root of ψ(X)−a in some ring extension
B of A. Then % : A → B is a faithfully flat map of R-algebras. Let
y′ = %y ∈ Ga(B). Now the element x ∈ Ga(B) defined by x : X 7→ α
is so that ΨB(x) = y′. Indeed,

ΨB(x)(X) = x(ψ(X))

= ψ(x(X))

= ψ(α)

= a.

Thus Ψ is an epimorphism in the faithfully flat topology.
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�

We shall employ short exact sequence (2) in what follows.

3. Computation of Extensions

Let i, j ≥ 0 be integers and let H(i)∗ = R[σ−1
ti

]∗ and H(j)∗ = R[ τ−1
tj

]∗

be R-Hopf orders inKC∗p corresponding to R-group schemes SpecH(i)∗

and SpecH(j)∗, respectively. We are interested in computing all short
exact sequences of the form

0→ SpecH(i)∗ → G→ SpecH(j)∗ → 0

where G is an R-group scheme. In other words, we seek to calculate
the group Ext1(SpecH(j)∗, SpecH(i)∗) of 1-extensions of SpecH(i)∗

by SpecH(j)∗.
Since there are obstructions to this calculation, we proceed indirectly

by computing Ext1(SpecH(j)∗,Ga), Ga = SpecR[X]. Note that over
K these extensions appear as

0→ Ga,K → Ga,K ×t Cp,K → Cp,K → 0,

with Ga,K = SpecK[X] and Cp,K = SpecKC∗p , the constant group
scheme of Cp. By ×t we mean that the cartesian product is twisted
in some manner. The group Ext1(SpecH(j)∗,Ga) is computed in the
usual way “cocycles modulo coboundaries”:

Ext1(SpecH(j)∗,Ga) = C(SpecH(j)∗,Ga)/B(SpecH(j)∗,Ga),

where

C(SpecH(j)∗,Ga) = {f ∈ Nat(SpecH(j)∗ × SpecH(j)∗ → Ga)

: f is a cocycle}.
By cocycle, we mean that for all commutativeR-algebrasA and x, y, z ∈
SpecH(j)∗(A),

fA(x, y)(X) + fA(x+ y, z)(X) = fA(y, z)(X) + fA(x, y + z)(X), (3)

fA(x, 0)(X) = 0 = fA(0, x)(X). (4)

Coboundaries are certain cocycles defined as

B(SpecH(j)∗,Ga) = {∂g : g ∈ Nat(SpecH(j)∗ → Ga), gA(0) = 0},
where

∂gA(x, y)(X) = gA(x)(X)− gA(x+ y)(X) + gA(y)(X).
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The problem becomes: how do we characterize these sets of natu-
ral transformations? Let us consider coboundaries first. By Yoneda’s
Lemma, natural transformations g : SpecH(j)∗ → Ga are in a 1-1 cor-
respondence with R-algebra homomorphisms HomR-alg(R[X], H(j)∗).
The R-algebra maps R[X]→ H(j)∗ = R[ τ−1

tj
]∗ are of the form X 7→ a,

with a ∈ H(j)∗. Since H(j)∗ ⊆
⊕p−1

m=0 Rem
∼= Rp, we can write

a ∈ H(j)∗ as a R-linear combination a = a0e0 + a1e1 + · · ·+ ap−1ep−1.

Note that a =
∑p−1

m=0 amem ∈ R[ τ−1
tj

]∗ if and only if〈
a0e0 + a1e1 + · · ·+ ap−1ep−1,

(
τ − 1

tj

)k〉
∈ R,

for all 0 ≤ k ≤ p − 1. That is, a =
∑p−1

m=0 amem ∈ R[ τ−1
tj

]∗ if and only

if the kth iterated difference dk satisfies

dk(a) =
k∑

m=0

(
k

m

)
(−1)mak−m ∈ tkjR,

for all 0 ≤ k ≤ p− 1.
So coboundaries are cocycles of the form ∂g where g : SpecH(j)∗ →

Ga is a natural transformation and g corresponds to an algebra map
R[X]→ H(j)∗ given by X 7→ a =

∑p−1
m=0 amem ∈ H(j)∗ with a0 = 0.

We can characterize cocycles in a similar way. Cocycles consist of
natural transformations

f ∈ Nat(SpecH(j)∗ × SpecH(j)∗ → Ga)

that satisfy the cocycle conditions (3), (4). By Yoneda’s Lemma, these
natural transformations are in a 1-1 correspondence with R-algebra
maps

R[X]→ H(j)∗ ⊗R H(j)∗

of the form X 7→ b, with b ∈ H(j)∗ ⊗R H(j)∗. Since

H(j)∗ ⊗R H(j)∗ ⊆ RC∗p ⊗R RC∗p =

p−1⊕
m=0

Rem ⊗R
p−1⊕
n=0

Ren,

and {em ⊗ en} is an R-basis for RC∗p ⊗R RC∗p , the element b can be
written as an R-linear combination of the em ⊗ en. Thus the algebra
maps are given as

X 7→ b =

p−1∑
m=0

p−1∑
n=0

am,n(em ⊗ en) ∈ H(j)∗ ⊗R H(j)∗,
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with am,n ∈ R. Note that the element b =
∑p−1

m=0

∑p−1
n=0 am,n(em ⊗ en),

am,n ∈ R, is in H(j)∗ ⊗R H(j)∗ if and only if the double iterated
difference dk,k

′
satisfies

dk,k
′
(b) =

k∑
m=0

k′∑
n=0

(
k

m

)(
k′

n

)
(−1)m+nak−m,k′−n ∈ t(k+k′)iR,

for all 0 ≤ k, k′ ≤ p− 1.
Let f : SpecH(j)∗ × SpecH(j)∗ → Ga be a natural transformation

corresponding to the algebra map φf : R[X]→ H(j)∗⊗RH(j)∗, defined
as

φf : X 7→ b =

p−1∑
m=0

p−1∑
n=0

am,n(em ⊗ en),

am,n ∈ R. The group SpecH(j)∗(R) consists of p elements

xm : β 7→ mtj,

0 ≤ m ≤ p− 1, and hence, SpecH(j)∗(R) = Z/pZ. Also, Ga(R) = R.
Thus fR is a function

fR : Z/pZ× Z/pZ→ R.

Let xm, xn ∈ SpecH(j)∗(R). Then

fR(xm, xn)(X) = (xm ⊗ xn)(φf (X))

= (xm ⊗ xn)(

p−1∑
m′=0

p−1∑
n′=0

am′,n′(em′ ⊗ en′))

= am,n.

In this way, f determines a function

f̂ : Z/pZ× Z/pZ→ R

defined as f̂(xm, xn) = am,n.
Next, let g : SpecH(j)∗ → Ga be a natural transformation corre-

sponding to the algebra map φg : R[X]→ H(j)∗, defined as

φg : X 7→ a =

p−1∑
m=0

amem,

am ∈ R. Let xm ∈ SpecH(j)∗(R). Then
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gR(xm)(X) = xm(φg(X))

= xm(

p−1∑
m′=0

am′em′)

= am.

And so, g determines a function

ĝ : Z/pZ→ R

defined as ĝ(xm) = am. In what follows we consider the familiar con-
struction of extensions of R by Z/pZ,

Ext1(Z/pZ, R) = C(Z/pZ, R)/B(Z/pZ, R),

where C(Z/pZ, R) is the set of all functons f : Z/pZ×Z/pZ→ R that
satisfy

f(l,m) + f(l +m,n) = f(m,n) + f(l,m+ n),

f(m, 0) = 0 = f(0, n),

for all l,m, n ∈ Z/pZ, (cocycles) and B(Z/pZ, R) consists of those
cocycles of the form ∂g for some function g : Z/pZ → R, g(0) = 0,
where

∂g(m,n) = g(m)− g(m+ n) + g(n),

for all m,n ∈ Z/pZ.

Proposition 3.1. Let f ∈ Nat(SpecH(j)∗× SpecH(j)∗ → Ga). Then

f is a cocycle in C(SpecH(j)∗,Ga) if and only if f̂ is a cocycle in
C(Z/pZ, R).

Proof. Suppose f : SpecH(j)∗ × SpecH(j)∗ → Ga is a cocycle, with
corresponding algebra homomorphism

φf : X 7→ b =

p−1∑
m′=0

p−1∑
n′=0

am′,n′(em′ ⊗ en′).

Then for all xl, xm, xn ∈ SpecH(j)∗(R),

fR(xl, xm)(X)+fR(xl+xm, xn)(X) = fR(xm, xn)(X)+fR(xl, xm+xn)(X).

Consequently, for all l,m, n, 0 ≤ l,m, n ≤ p− 1,

al,m + al+m,n = am,n + al,m+n,

where m+ n and l +m are taken modulo p. Thus
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f̂(xl, xm) + f̂(xl+m, xn) = f̂(xm, xn) + f̂(xl, xm+n).

Moreover,
fR(xl, 0)(X) = 0 = fR(0, xm)(X)

for all xl, xm ∈ SpecH(j)∗(R). Thus for all 0 ≤ l,m ≤ p− 1,

al,0 = 0 = a0,m,

and so,

f̂(xl, 0) = 0 = f̂(0, xm).

It follows that f̂ is in C(Z/pZ, R).

For the converse, suppose that f̂ : Z/pZ×Z/pZ→ R is a cocycle ob-
tained from the natural transformation f : SpecH(j)∗×SpecH(j)∗ →
Ga. Then for all 0 ≤ l,m, n ≤ p− 1 one has

al,m + al+m,n = al,m+n + am,n,

where m+ n and l +m are taken modulo p. Thus,

p−1∑
l=0

p−1∑
m=0

p−1∑
n=0

(al,m + al+m,n)(el ⊗ em ⊗ en)

=

p−1∑
l=0

p−1∑
m=0

p−1∑
n=0

(al,m+n + am,n)(el ⊗ em ⊗ en).

Consequently, with ∆ = ∆H(j)∗ ,(
p−1∑
l=0

p−1∑
m=0

al,m(el ⊗ em ⊗ 1)

)
+

(
p−1∑
k=0

p−1∑
n=0

ak,n(∆(ek)⊗ en)

)

=

(
p−1∑
m=0

p−1∑
n=0

am,n(1⊗ em ⊗ en)

)
+

(
p−1∑
l=0

p−1∑
k=0

al,k(el ⊗∆(ek))

)
.

Thus, for any R-algebra A and x, y, z ∈ SpecH(j)∗(A).

(x⊗y⊗z)

(
p−1∑
l=0

p−1∑
m=0

al,m(el ⊗ em ⊗ 1)

)
+(x⊗y⊗z)

(
p−1∑
k=0

p−1∑
n=0

ak,n(∆(ek)⊗ en)

)

= (x⊗y⊗z)

(
p−1∑
m=0

p−1∑
n=0

am,n(1⊗ em ⊗ en)

)
+(x⊗y⊗z)

(
p−1∑
l=0

p−1∑
k=0

al,k(el ⊗∆(ek))

)
,

which implies

(x⊗y)φf (X)+((x+y)⊗z)φf (X) = (y⊗z)φf (X)+(x⊗(y+z))φf (X).
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Thus

fA(x, y)(X) + fA(x+ y, z)(X) = fA(y, z)(X) + fA(x, y + z)(X).

Now, suppose 0 = am′,0, form′ = 0, . . . , p−1, and let x ∈ SpecH(j)∗(A).
Then

0 = (x⊗ λAεH(j)∗)(

p−1∑
m′=0

p−1∑
n′=0

am′,n′(em′ ⊗ en′))

= (x⊗ 0)(

p−1∑
m′=0

p−1∑
n′=0

am′,n′(em′ ⊗ en′))

= (x⊗ 0)φf (X)

= fA(x, 0)(X).

In a similar manner, the condition 0 = a0,n, for n = 0, . . . , p− 1, yields
fA(0, y)(X) = 0 for y ∈ SpecH(j)∗(A). Consequently, f satisfies the
cocycle conditions (3), (4).

�

Proposition 3.2. Let f ∈ C(SpecH(j)∗,Ga). Then f ∈ B(SpecH(j)∗,Ga)

if and only if f̂ = ∂ĝ for some natural transformation g : SpecH(j)∗ →
Ga with gA(0) = 0 for all commutative R-algebras A.

Proof. Let f ∈ B(SpecH(j)∗,Ga). Then there exists a natural trans-
formation g : SpH(j)∗ → Ga for which

fR(xm, xn)(X) = gR(xm)(X)− gR(xm + xn)(X) + gR(xn)(X) (5)

and gA(0) = 0 for all commutative R-algebras A. Let

φf : X →
p−1∑
m=0

p−1∑
n=0

am,n(em ⊗ en),

and φg : X 7→
∑p−1

m=0 am denote the algebra maps corresponding to f, g,
respectively. From (5) we obtain

am,n = am − am+n + am,

for all 0 ≤ m,n ≤ p−1 (m+n taken modulo p.) It follows that f̂ = ∂ĝ.

For the converse suppose that f̂ = ∂ĝ for some natural transforma-
tion g : SpH(j)∗ → Ga with gA(0) = 0. Then

am,n = am − am+n + an,

for 0 ≤ m,n ≤ p− 1 (m+ n taken modulo p.) Consequently,
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p−1∑
m,n=0

am,n(em ⊗ en) =

p−1∑
m,n=0

(am − am+n + an)(em ⊗ en)

=

p−1∑
m=0

am(em ⊗ 1)−
p−1∑
k=0

ak∆H(j)∗(ek) +

p−1∑
n=0

an(1⊗ en).

(6)

Let x, y ∈ SpecH(j)∗(A). Then (6) implies that

(x⊗ y)

p−1∑
m,n=0

am,n(em ⊗ en)

= (x⊗ y)

p−1∑
m=0

am(em ⊗ 1)− (x⊗ y)

p−1∑
k=0

∆H(j)∗(akek) + (x⊗ y)

p−1∑
n=0

an(1⊗ en),

and so,

(x⊗ y)φf (X) = x(φg(X))− (x+ y)(φg(X)) + y(φg(X)).

Thus

fA(x, y)(X) = gA(x)(X)− gA(x+ y)(X) + gA(y)(X),

and so, f = ∂g.
�

Define:

Ĉ = {r ∈ C(Z/pZ, R) : r = f̂ for some natural transformation

f : SpecH(j)∗ × SpecH(j)∗ → Ga}.

B̂ = {r ∈ Ĉ : r = ∂ĝ for some natural transformation g : SpecH(j)∗ → Ga

with gA(0) = 0 for all commutative R-algebras A}.

Proposition 3.3. Ext1(SpecH(j)∗,Ga) = Ĉ/B̂.

Proof. This follows from Proposition 3.1 and Proposition 3.2. �

A cocycle in r : Z/pZ × Z/pZ → R in Ĉ will be given as the p × p
matrix
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Mr =



a0,0 a0,1 · · · · · · a0,p−1

a1,0 a1,1 · · · · · · a1,p−1

...
...

...

ap−1,0 ap−1,1 · · · · · · ap−1,p−1

 .

with r(xm, xn) = am,n.

Proposition 3.4. A cocycle r ∈ Ĉ is congruent modulo B̂ to a cocycle
of the form

Mw =



0 0 · · · · · · 0
0 0 · · · 0 w
0 0 · · · 0 w w
...

...
...

... 0
...

0 w w · · · w


for some w ∈ R.

Proof. Let r ∈ Ĉ. Then r = f̂ for some natural transformation f :
SpecH(j)∗ × SpecH(j)∗ → Ga. The matrix of f̂ has the form

Mf̂ =



0 0 0 · · · 0
0 a1,1 a1,2 · · · a1,p−1

0 a2,1 a2,2 · · · a2,p−1
...

...
...

...
...

...
...

...
0 ap−1,1 ap−1,2 · · · ap−1,p−1


,

for elements am,n ∈ R. Mf̂ is symmetric. Since

p−1∑
m=0

p−1∑
n=0

am,n(em ⊗ en) ∈ H(j)∗ ⊗H(j)∗,

〈
p−1∑
m=0

p−1∑
n=0

am,n(em ⊗ en), (τ − 1)k ⊗ (τ − 1)k
′

〉
∈ t(k+k′)jR,

for 0 ≤ k, k′ ≤ p − 1. In the second row of Mf̂ , let l be the smallest
integer ≤ p− 2, for which a1,l 6= 0. Now,
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〈
p−1∑
m=0

p−1∑
n=0

am,n(em ⊗ en), τ − 1⊗ (τ − 1)l,

〉
= a1,l ∈ t(1+l)jR. (7)

Consider the element c =
∑l+1

m=0 cmem with

cm =

{
0 if 0 ≤ m ≤ l
a1,l if m = l + 1.

Now, dk(c) ∈ tkjR for 0 ≤ k ≤ l + 1. And so, c satisfies the first
l + 2 conditions for membership in H(j)∗. Note that c has only l + 2
components. However, one can find elements cm, m = l+2, l+3, . . . , p−
1, so that c =

∑p−1
m=0 cmem ∈ H(j)∗. Now, c corresponds to a natural

transformation

s : SpecH(j)∗ → Ga, sA(0) = 0,

and a function ŝ : Z/pZ→ R. Thus ∂ŝ is an element of B̂ and f̂ + ∂ŝ
has matrix whose second row satisfies

a1,0 = a1,1 = · · · = a1,l = 0.

Repeating this process, we find that f̂ is congruent modulo B̂ to a
cocycle (also denoted as f̂) with matrix

Mf̂ =



0 0 0 · · · 0 0
0 0 0 · · · 0 a1,p−1

0 0 a2,2 · · · a2,p−2 a2,p−1
...

...
...

...
...

...
...

...
...

...
0 0 ap−2,2 · · · ap−2,p−1

0 ap−1,1 ap−1,2 · · · ap−1,p−2 ap−1,p−1


.

The cocycle conditions (3), (4) then imply that f̂ is congruent modulo

B̂ to a cocycle in Ĉ with matrix

Mw =


0 0 0 · · · 0
0 0 · · · 0 w
0 · · · 0 w w
...

...
...

0 w w · · · w

 ,

for w ∈ R, cf. [3, Theorem 3.4], [4, Proposition 8.2.3].
�
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Proposition 3.5. Ext1(SpecH(j)∗,Ga) ∼= Rtpj.

Proof. By Proposition 3.4, every coset in Ĉ/B̂ can be represented by
a cocycle of the form Mw for some w ∈ R. Now, a matrix of the form
Mw corresponds to a cocycle in Ĉ if and only if dk,k

′
(Mw) ∈ Rt(k+k′)j

for all 0 ≤ k, k′ ≤ p − 1. And one finds that dk,k
′
(Mw) ∈ Rt(k+k′)j for

all 0 ≤ k, k′ ≤ p− 1, if and only if w ∈ Rtpj.
Now, suppose that the cocycle r ∈ Ĉ with matrix Mw is of the

form r = ∂ĝ for some natural transformation g : SpecH(j)∗ → Ga,
gA(0) = 0. Let φg : X 7→ a =

∑
m=0 amem ∈ H(j)∗ be the algebra map

corresponding to g. Now, r = ∂ĝ implies that

a1 + a1 − a2 = 0

a1 + a2 − a3 = 0

a1 + a3 − a4 = 0
...

a1 + ap−2 − ap−1 = 0

a1 + ap−1 − a0 = w,

hence w = 0.
�

Let

K ⊗R − : Ext1(SpecH(j)∗,Ga)→ Ext1(SpecKC∗p ,Ga,K)

be the maps that takes the extension

0→ Ga → G→ SpecH(j)∗ → 0

to its “generic” extension over K:

0→ Ga,K → K ⊗R G→ SpecKC∗p → 0.

The kernel of K⊗R− is the group of generically trivial extensions, de-
noted as Ext1

gt(SpecH(j)∗,Ga). These are the extensions in Ext1(SpecH(j)∗,Ga)
that over K appear as

0→ Ga,K → Ga,K ×Cp → Cp → 0.

Proposition 3.6. An element of Ext1
gt(SpecH(j)∗,Ga) is of the form

0→ Ga → SpecR[X + a, β]→ SpecH(j)∗ → 0,

where a = ηe1 + 2ηe2 + · · · + (p − 1)ηep−1 for some η ∈ K and β =
tje1 + 2tje2 + · · ·+ (p− 1)tjep−1.
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Proof. Let

0→ Ga → G→ SpecH(j)∗ → 0

denote a generically trivial extension corresponding to the cocycle f :
SpecH(j)∗×SpecH(j)∗ → Ga whose matrix isMw. The corresponding
algebra map is φf : X →Mw. As a group scheme, G = Ga×SpecH(j)∗

with the multiplication twisted by the cocycle f . Over K, Mw corre-
sponds to a cocycle

K ⊗ f : SpecKH(j)∗ × SpecKH(j)∗ → SpecK[X]

in C(SpecKH(j)∗, SpecK[X]) that is trivial. Thus, K ⊗ f = ∂g,
for some natural transformation g : SpecKH(j)∗ → SpecK[X] and g
corresponds to an algebra map φg : X 7→ a, for some a =

∑p−1
m=0 amem ∈

KH(j)∗. As shown above, this implies that w = 0. Moreover,

a = ηe1 + 2ηe2 + · · ·+ (p− 1)ηep−1,

for some η ∈ K (actually, η = a1.)
There is an isomorphism of K-group schemes

g′ : Ga,K × SpecKH(j)∗ → SpecK[X]× SpecKC∗p

defined by

g′(x, y) = (x+ g(y), y),

for x ∈ Ga,K , y ∈ SpecKH(j)∗. The isomorphism g′ makes the follow-
ing diagram commute:

0 → SpecK[X] → Ga,K × SpecKH(j)∗ → SpecKH(j)∗ → 0

|| g′ ↓ ||

0 → SpecK[X] → SpecK[X]× SpecKC∗p → SpecKC∗p → 0

The Hopf algebra isomorphism corresponding to g′ is

ψ : K[X]⊗K KC∗p → K[X]⊗K KH(j)∗,

defined as

X ⊗ 1 7→ X ⊗ 1 + 1⊗ (ηe1 + 2ηe2 + · · ·+ (p− 1)ηep−1),

1⊗ β 7→ 1⊗ β,
with KC∗p = K[β], βp = t(p−1)jβ,

β = tje1 + 2tje2 + · · ·+ (p− 1)tjep−1.



19

If we restrict the map ψ to R[X]⊗R H(j)∗ its image is

R [X ⊗ 1 + 1⊗ a, 1⊗ β] ∼= R [X + a, β] .

Thus

0→ SpecR[X]→ SpecR[X + a, β]→ SpecH(j)∗ → 0

is the generically trivial extension corresponding to the cocycle f .
�

Let {em,n}, 0 ≤ m,n ≤ p − 1, be the basis for K(Cp × Cp)
∗ that

is dual to the basis {(σc, τ d)}, 0 ≤ c, d ≤ p − 1 for K(Cp × Cp). We
have em,n((σa, τ b)) = δm,aδn,b. Equivalently, 〈em,n, (σa, τ b)〉 = δm,aδn,b,
where 〈 , 〉 : K(Cp × Cp)∗ ×K(Cp × Cp)→ K is the duality map.

Proposition 3.7. An element of Ext1
gt(SpecH(j)∗, SpecH(i)∗) can be

written in the form

0→ SpecH(i)∗ → SpecR[γ + a, β]→ SpecH(j)∗ → 0,

where

a = η(e0,1 + e1,1 + · · ·+ ep−1,1) + 2η(e0,2 + e1,2 + · · ·+ ep−1,2)

+ · · ·+ (p− 1)η(e0,p−1 + e1,p−1 + · · ·+ ep−1,p−1),

β = tj(e0,1 + e1,1 + · · ·+ ep−1,1) + 2tj(e0,2 + e1,2 + · · ·+ ep−1,2)

+ · · ·+ (p− 1)tj(e0,p−1 + e1,p−1 + · · ·+ ep−1,p−1),

γ = ti(e1,0 + e1,1 + · · ·+ e1,p−1) + 2ti(e2,0 + e2,1 + · · ·+ e2,p−1)

+ · · ·+ (p− 1)ti(ep−1,0 + ep−1,1 + · · ·+ ep−1,p−1).

Proof. Recall the short exact sequence in the faithfully flat topology
(Proposition 2.6)

0→ SpecH(i)∗ → Ga
Ψ→ Ga → 0 (8)

with Ψ given by the Hopf map

ψ : R[X]→ R[X],

ψ(X) = Xp − t(p−1)iX. Applying (8) in the long exact sequence in
cohomology yields the isomorphism

Ext1
gt(SpecH(j)∗, SpecH(i)∗)
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∼= ker(Ext1
gt(SpecH(j)∗,Ga)

Ψ→ Ext1
gt(SpecH(j)∗,Ga)), (9)

cf. [3, Corollary 3.6b]. From the isomorphism (9) we conclude that an
arbitrary element of Ext1

gt(SpecH(j)∗, SpecH(i)∗) can be written as

0→ Spec (R[X]/(ψ(X)))→ Spec (R[X + a, β]/(ψ(X)))

→ SpecH(j)∗ → 0. (10)

Over K, short exact sequence (10) appears as

0→ SpecKC∗p → SpecK(Cp × Cp)∗ → SpecKC∗p → 0.

And so, (10) is now

0→ SpecR[α]→ SpecR[γ + a, β]→ SpecH(j)∗ → 0 (11)

where

a = η(e0,1 + e1,1 + · · ·+ ep−1,1) + 2η(e0,2 + e1,2 + · · ·+ ep−1,2)

+ · · ·+ (p− 1)η(e0,p−1 + e1,p−1 + · · ·+ ep−1,p−1),

β = tj(e0,1 + e1,1 + · · ·+ ep−1,1) + 2tj(e0,2 + e1,2 + · · ·+ ep−1,2)

+ · · ·+ (p− 1)tj(e0,p−1 + e1,p−1 + · · ·+ ep−1,p−1),

γ = ti(e1,0 + e1,1 + · · ·+ e1,p−1) + 2ti(e2,0 + e2,1 + · · ·+ e2,p−1)

+ · · ·+ (p− 1)ti(ep−1,0 + ep−1,1 + · · ·+ ep−1,p−1).

�

Let

H(i, j, µ) = R

[
(σ, 1)− (1, 1)

ti
,
(σ, 1)[−µ](1, τ)− (1, 1)

tj

]
,

(σ, 1)[−µ] =

p−1∑
m=0

(
−µ
m

)
((σ, 1)− (1, 1))m,

ord(µ) ≥ −i + (j/p), be the Elder order in K(Cp × Cp), given in the
Introduction.

Proposition 3.8. Let η = µti. Then H(i, j, µ)∗ = R[γ + a, β].
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Proof. One shows directly that 〈R[γ + a, β], H(i, j, µ)〉 ⊆ R, thus

R[γ + a, β] ⊆ H(i, j, µ)∗.

Moreover, disc(R[γ+a, β]/R) = disc(H(i, j, µ)∗/R), hence H(i, j, µ)∗ =
R[γ + a, β].

�

Proposition 3.9. Let H be an arbitrary R-Hopf order in K(Cp×Cp)
that induces the short exact sequence

R→ H(i)→ H → H(j)→ R.

Then H is an Elder order in K(Cp × Cp).

Proof. Taking duals yields the short exact sequence

R→ H(j)∗ → H∗ → H(i)∗ → R,

and applying Spec− gives the short exact sequence

0→ SpecH(i)∗ → SpecH∗ → SpecH(j)∗ → 0,

which is an element of Ext1
gt(SpecH(j)∗, SpecH(i)∗). By Proposition

3.7, H∗ is of the form R[γ + a, β] for γ, β as above and

a = η(e0,1 + e1,1 + · · ·+ ep−1,1) + 2η(e0,2 + e1,2 + · · ·+ ep−1,2)

+ · · ·+ (p− 1)η(e0,p−1 + e1,p−1 + · · ·+ ep−1,p−1),

for some η ∈ K. Since R[γ + a, β] is an R-algebra, ap ∈ R[β] = H(j)∗.
Hence

ord(ηp) = p ord(η) ≥ j,

and so ord(η) ≥ j/p. Let µ = η/ti. Then

ord(µti) = ord(η) ≥ j/p,

and so, ord(µ) ≥ −i + (j/p). Now the Elder order H(i, j, µ) exists
and H(i, j, µ)∗ = R[γ + a, β]. Consequently, H(i, j, µ)∗ = H∗, and so
H = H(i, j, µ).

�
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