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1. INTRODUCTION

Let p be a prime number, let n be an integer, n > 1, and let I, denote
the Galois field with ¢ = p™ elements. Let ¢t be an indeterminate, let
R = F,[[t]] and let K = Frac(R) = F,((¢)). R is a local ring with
maximal ideal (¢); an element z € K can be written as x = ut’ for
some unit u € R, and some i € Z. The (t)-order of z is ord(x) = i.

Let C, x C, denote the elementary abelian group of order p? with
o, T generating the left and right copies of C),. Let C}, x C,, — C), denote
the canonical surjection defined by o — 1. For integers 7,5 > 0, there
are Hopf (Larson) orders in KC,, given as

o—1 T—1
H(i)=R . H(j)=R — | .
-] H-r| T
Suppose p € K is so that ord(u) > —i+(j/p). Then there is an R-Hopf
order in K(C, x C,) of the form

o—1 ol=Hr —1
H .a .7 =R ) : )
N I

with

ol = § (;:) (0 —1)™,

m=0
called an Elder order in K (C, x C,) [2].
The Elder order H (i, j, ;1) induces a short exact sequence of R-Hopf
orders
R— H(i) — H(i,j,u) — H(j) — R,
1
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or equivalently, a short exact sequence of R-group schemes
0 — Spec H(j) — Spec H (i, j, 1) — Spec H (i) — 0. (1)

Sequence (1) represents an equivalence class in Ext! (Spec H (i), Spec H(j)),
the group of 1-extensions of Spec H(j) by Spec H(i). Over K elements
of Ext'(Spec H (i), Spec H(j)) appear as

0= ppx = Pp X Ppx = Ppx — 0

where p, x denotes the multiplicative group of the p roots of unity over

K. So to compute Hopf orders in K(C, x C,) (including those of Elder

type) we ought to compute the group of extensions Ext'(Spec H (), Spec H(3)).
Unfortunately, the direct computation of this group is too difficult.

The problem is somewhat easier if we consider the linear duals of H (7)

and H(j).
In this paper we compute the elements in Ext'(Spec H(5)*, Spec H (i)*)

which over K appear as

0—=Cpr = Cprx xCor —Cpr —0,

where C, g is the constant group scheme of C), over K. These are the
generically trivial extensions, denoted as Ext}]t(Spec H(j)*,Spec H(i)*).
We then compute the representing algebras of the middle terms of these
generically trivial extensions, take their duals, and show that these du-
als are Elder orders in K (C,xC,). We follow the method of C. Greither
[3, Part I] where the author has solved the analogous problem in the
characteristic 0 case. Here is our main result (Proposition 3.9.)

Main Theorem. Let H be an arbitrary R-Hopf order in K(C, x C,)
that induces the short exact sequence

R— H(i)— H— H(j) = R.
Then H is an Elder order in K(C, x C,).

We begin with some preliminary results concerning the Larson order
H(i).

2. LARSON ORDERS IN KC,

Let G be a finite group of order n whose elements are listed as
1 =90,91,..-,9n—1. Let T" be a commutative ring with unity. Then
the group ring T'G is a T-Hopf algebra with comultiplication Apg :
TG — TG @7 TG defined as g — gr ® gi, counit epg : TG — T
defined by gx — 1 and coinverse Spq : TG — T'G given by gi +—> gk_l,
for 0 < k < n—1. Note that B = {g0,91,--.,9n_1} is a T-basis for
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TG. Let TG* = Homp (TG, T) denote the T-module of T-linear maps
TG — T (the linear dual of TG.) Let {eg,e1,...,e,-1} be the basis of
TG* dual to the basis B, that is, (e;, gx) = e;(gx) = 1.k, With

(,):TG*xXTG =T
the duality map.
Proposition 2.1. T'G* is a T-Hopf algebra.

Proof. The T-algebra structure of T'G* is induced from the T-coalgebra
structure of T'G: the dual basis {eg, e1,...,e,_1} is a collection of min-
imal idempotents and consequently

n—1
TG =P Tem =17,
m=0

as T-algebras. The T-coalgebra structure of T'G* is induced from the
T-algebra structure of T'G: comultiplication is defined by

Apg-(en) = Z a ® €p
9m=9gaJgb

and the counit map is defined as epgs(en) = dmo. The coinverse
map for T'G* is the transpose of the coinverse of T'G, and is given
by Srg(em) = €, with g, = g1, cf. [1, §1.4].

O

Applying Proposition 2.1 to the case T' = K, G = C,, we see that
KCj5 is a K-Hopf algebra. Let H(i) = R [";1], i > 0, be a Larson

order in KC), and let H(:)* = Hompg(H (i), R) denote the R-module of
R-linear maps H (i) — R, the linear dual of H (7).

Proposition 2.2. Fori >0, H(i\)* =R [”;1}* is an R-Hopf order in
KC;.
Proof. Since H(i) = R [%+] is an R-submodule of KC,, free of rank
p over R, H(i)* = R[%]" is an R-submodule of KCy, free of rank
p over R. Morover, since H(7) is invariant under the comultiplication
of KCp, H(i)* is closed under the multiplication of KCy. Moreover,
KH(i)* = KCy, and so H(i)" is an R-order in KC.

Furthermore, since H(i) is closed under the multiplication of KC),
H(i)* is invariant under the comultiplication of KC;. Thus H(i)* is

an R-Hopf order in KC}.

O
Proposition 2.3. Fori >0, H(i)* = R ["’1]* is an R-Hopf algebra

te
with Hopf algebra structure induced from KC}.
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Proof. From Proposition 2.2, we know that H (7)* is an R-algebra. Since
H(i)* is an R-Hopf order in KCj, the comultiplication for H(i)* is
the restriction of Agc,. to H(i)*. Since the counit map exc; is the
transpose of the unit map Axc,, the counit map €xc; restricts to give
amap H(i)* — R, which we take to be the counit map of H(:)*. Since
the coinverse map S KC; is the transpose of the coninverse map Skc,,
the coninverse map restricts to give a map H(i)* — H(i)*, which we
take to be the coninverse of H(i)*. Thus H(i)* is an R-Hopf algebra
with structure maps induced from KCj.

O

One has an inclusion

RCp:R[a—l]QR{U_l],

ti

and so there is an inclusion of linear duals

R [" — 1} C RC™.
tz p

By Proposition 2.1, RCy; = @, Re,, = RP, and so H(i)* € @, Ren,

RP. An R-basis for R [“; ]* can therefore be obtained in terms of the

Em-
There is a symmetric non-degenerate bilinear form on KCj

B:KC:x KC: = K

defined as B(x,y) = S 0™ (xy). Here o™ is considered as an ele-

ment of the double dual KC}J* = KC,. For an R-order A in KCy, free
of rank p on the basis {by,bs,...,b,}, we define

disc(A/R) = Rdet(B(by, by))-
Proposition 2.4. An R-basis for H(i)* = R [";1]* is of the form
{1,8,5% ..., B8P} where
B=te +2'eg+ -+ (p— 1t'ep 1.
Thus H(i)* = R[B] with g7 = t®~1)3,
Proof. An R-basis for H(i) = R [Z] is

e

For 0 <k, 1l <p-—1,let

oo (Ot itk >
M0 if k< 1.

[



Then

c—1 !
Vo,k€0 + V1,k€1 + -+ Up_1 k€p—1, i = Ok

Thus, with respect to the basis E' = {eq, e1,...,¢, 1} for RCy, H(i)*
has a basis consisting of the columns of the p x p matrix

) 0 0 0 0 0

o G 0o 0 0 0
Mp=| G @f G# o 0 0

DA L L v [

Put

1 2\ ,; p—1\,
B = (1)t61+(1)t62+---+( 1 )tep_1

= tey +2t'ey + -+ (p— Dt'e, 1.

Now, 87 = t??~Di3. We claim that R[3] = H(i)*. Certainly, R[S] C
H(i)*. We show equality by showing that

disc(H (i)*/R) = disc(R[F]/R).
Note that disc(RC;/R) = R. One has that the module index

[RCy - H(i)'] = Rdet(M})
R(H2+-+(p-1))i

Rtp(Pfl)i/Q,

and so,

disc(H(i)*/R) = [RC; : H(i)"]*disc(RC}/R)
— Rt~
On the other hand, {1,83, 3%, ...,8°"'} is a an R-basis for R[3] and

its basis matrix with respect to E is



1 0 0 - 0

1 t (t))? . (typ-1
Ng = 1 2t (th)z ... (2ti)p—1

L (=1t (=12 - ((p— 1)t

Since Ng is Vandermonde,

p—1 p—k—l
det(Np) = —1t")
k=1 [=0
p—1p—k—1
— (=D +p-2)++2+1)i H H (p—k—1)
k=1 1[=0

_ th(P—l)i/Q

where ¢ is an integer not divisible by p. Consequently,

disc(R[8]/R) = [RC; : R[f]]*disc(RC}/R)
—  Rple—by
= disc(H(7)").
U
Proposition 2.5. The Hopf algebra structure of H(i)* = R[f], P =
te=1ig s given by Agcs(B) = 1@ B8+ B®1, exc:(B) = 0, and
SKC; (8) = =8

Proof. Let A = Agcs. By direct computation, one has
Agcs(B) = t'Aler) +26'Ale) + -+ (p — Dt'Alep-1)

- (Z J®0>+2ti< > 0®0>

o=0% O' 0'220' O'

+"'+(P—1)ti< > 0“®a”)

oP~l=gaegb
= (egte+-+ep 1)@ (te +2teq+ -+ (p— 1Dt'e, ;)
+ (tey +2t'ea + -+ (p— Dt'e, 1) @ (eg + €1+ +ep1)
= 1®B8+8®1.
Moreover, as one can check, excs(3) = 0, and Skcx(8) = —8. O
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Let X be an indeterminate. The ring of polynomials R[X] is R-Hopf
algebra with comultiplication defined by Az x)(X) =10 X + X ® 1,
counit defined by egx](X) = 0 and coinverse given by Skx(X) = —X.
The R-Hopf algebra R[X] corresponds to the R-group scheme G, =
Spec R[X], the additive R-group scheme. Let ¢(X) = X? — tP~Vix,
The map ¢ : R[X] — R[X] is a homomorphism of R-Hopf algebras
corresponding to a homomorphism of R-group schemes

VUG, = G,

defined as follows. For each commutative R-algebra A, g € G,(A),
g(X)=a,a€A,

Yalg)(X) = g(
g(Xp _ t(p—l)iX)
g(X)P — P Vig(X)

a? — =g,

Observe that there is an isomorphism of R-Hopf algebras
RIX]/(p(X)) = H()",

defined as X +— . Thus the kernel of ¥ is a subgroup scheme repre-
sented by H(i)*. One has an exact sequence of R-group schemes,

0 — Spec H(1)* — G, % G,
In fact, in the faithfully flat topology we can say a bit more.

Proposition 2.6. There is a short exact sequence
0 — Spec H(i)* = Gy = G4 — 0 (2)
in the faithfully flat topology.

Proof. Let A be a commutative R-algebra and let y € G,(A) be defined
asy: X — a,a € A. Let a be aroot of 1)(X)—a in some ring extension
B of A. Then o : A — B is a faithfully flat map of R-algebras. Let
Yy = oy € G,(B). Now the element x € G,(B) defined by z : X — «
is so that Wg(x) = 1/. Indeed,

Up(z)(X) = (X))
= Y(x(X))
= ¥(a)

Thus V¥ is an epimorphism in the faithfully flat topology.



We shall employ short exact sequence (2) in what follows.

3. COMPUTATION OF EXTENSIONS
Let 4, j > 0 be integers and let H(i)* = R[%]* and H(j)* = R[Z+]*

tJ

be R-Hopf orders in K C}; corresponding to R-group schemes Spec H (4)*
and Spec H (j)*, respectively. We are interested in computing all short
exact sequences of the form

0 — Spec H(i)* —+ G — Spec H(j)* — 0

where G is an R-group scheme. In other words, we seek to calculate
the group Ext'(Spec H(j)*, Spec H(4)*) of 1-extensions of Spec H (7)*
by Spec H(j)*.

Since there are obstructions to this calculation, we proceed indirectly
by computing Ext'(Spec H(j)*, G,), G, = Spec R[X]. Note that over
K these extensions appear as

0— Ga,K — Ga,K X¢ Cp,K — Cp,K — 0,

with G, = Spec K[X] and C, x = Spec KCy, the constant group
scheme of Cj,. By x; we mean that the cartesian product is twisted
in some manner. The group Ext'(Spec H(j)*, G,) is computed in the
usual way “cocycles modulo coboundaries”:

Ext'(Spec H(j)", G,) = C(Spec H(j)*, Ga)/B(Spec H(j)", Ga),

where

C(Spec H(7)*,G,) = {f € Nat(Spec H(j)* x Spec H(j)* — G,)
: [ is a cocycle}.

By cocycle, we mean that for all commutative R-algebras A and x,y, 2z €
Spec H (j)*(A),

falz, y)(X) + fale +y, 2)(X) = faly, 2)(X) + falz,y + 2)(X), (3)

fa(z,0)(X) = 0 = fa(0, ) (X). (4)
Coboundaries are certain cocycles defined as
B(Spec H(j)", Ga) = {0g : g € Nat(Spec H(j)" — Ga), 94(0) = 0},
where

Oga(w,y)(X) = ga(z)(X) — galr + y)(X) + ga(y)(X).
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The problem becomes: how do we characterize these sets of natu-
ral transformations? Let us consider coboundaries first. By Yoneda’s
Lemma, natural transformations g : Spec H(j)* — G, are in a 1-1 cor-
respondence with R-algebra homomorphisms Homp_a1s(R[X], H(5)*).
The R-algebra maps R[X]| — H(j)* = R[Z]" are of the form X ~ a,
with @ € H(j)*. Since H(j)* € @, Re, = RP, we can write
a € H(j)* as a R-linear combination a = apeg + ajeq + -+ + ap_1€p1.
Note that a = Y"1 anen € R[Z51]* if and only if

r—1\"
apeo + aije; + -+ ap_1€p_1, t—] € R,

forall 0 < k < p—1. That is, a = 37 amem € R[Z5A]* if and only
if the kth iterated difference d* satisfies

d*(a) = é (Z) (=)™ a_pm € t" R,

forall 0 <k <p-—1.

So coboundaries are cocycles of the form dg where g : Spec H(j)* —
G, is a natural transformation and g corresponds to an algebra map
R[X] — H(j)* given by X v a=S"" anen € H(j)* with ag = 0.

We can characterize cocycles in a similar way. Cocycles consist of
natural transformations

f € Nat(Spec H(j)* x Spec H(j)* — G,)

that satisfy the cocycle conditions (3), (4). By Yoneda’s Lemma, these
natural transformations are in a 1-1 correspondence with R-algebra
maps

R[X] = H(j)" ®r H(j)"
of the form X +— b, with b € H(j)* ®g H(j)*. Since

p—1 p—1
H(j)* ®r H(j)* € RC; @ RC; = @D Rey @1 € Re,
m=0 n=0

and {e,, ® e,} is an R-basis for RC; ®r RC;;, the element b can be
written as an R-linear combination of the e,, ® e,. Thus the algebra
maps are given as

p—1 p—1

Xb=3 " tmalem @e,) € H(j) ®@r H(j),

m=0 n=0
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with a,,,, € R. Note that the element b = p-1 b Bamn(em ® en),

m=0

amn € R, is in H(j)* ®p H(j)* if and only if the double iterated
difference d"* satisfies

kK
dk,k’ ) = k K _1)mtn t(kJrk/)zR
5= () () crr oo e t60m
m=0 n=0

forall 0 < k, k' <p—1.

Let f : Spec H(j)* x Spec H(j)* — G, be a natural transformation
corresponding to the algebra map ¢ : R[X] — H(j)*®rH (j)*, defined
as

p—1 p—1

pr: X—=b= ZZam,n(em@)en),

m=0 n=0
amn € R. The group Spec H(j)*(R) consists of p elements
Tt B = mit?,

0 <m < p—1, and hence, Spec H(j)*(R) = Z/pZ. Also, G,(R) = R.
Thus fg is a function

fr:7Z/pZ x Z/pZ — R.
Let @y, x, € Spec H(j)*(R). Then

Jr(@m, 2n)(X) = ($m®$n)(¢f(X))

-1 p—1

= (T @) Z Zam’n’ em' @ enr))

'=0n'=0

3

= Qmn-
In this way, f determines a function
f:Z/pZ x Z/]pZ — R

defined as f(xm, Tp) = Um -
Next, let g : Spec H(j)* — G, be a natural transformation corre-
sponding to the algebra map ¢, : R[X| — H(j)*, defined as

p—1

¢g:Xl—>a:Zamem,

m=0

am € R. Let x,,, € Spec H(j)*(R). Then



11

gr(m)(X) = 2m(0g(X))

And so, g determines a function
G:Z/pZ — R

defined as §(z,,) = a,,. In what follows we consider the familiar con-
struction of extensions of R by Z/pZ,

Ext'(Z/pZ, R) = C(Z/pZ, R)/B(Z/pZ, R),
where C(Z/pZ, R) is the set of all functons f : Z/pZ x Z/pZ — R that
satisfy

f,m)+ f(l+m,n) = f(m,n)+ f(l,m+n),

f(m,O) :O:f(07n>>

for all {,m,n € Z/pZ, (cocycles) and B(Z/pZ, R) consists of those
cocycles of the form dg for some function g : Z/pZ — R, g(0) = 0,
where

dg(m,n) = g(m) — g(m +n) + g(n),
for all m,n € Z/pZ.
Proposition 3.1. Let f € Nat(Spec H(j)* x Spec H(j)* — G,). Then

f is a cocycle in C(Spec H(7)*,G,) if and only if f is a cocycle in
C(Z/pZ, R).

Proof. Suppose f : Spec H(j)* x Spec H(j)* — G, is a cocycle, with
corresponding algebra homomorphism

p—1 p—1

¢f X —=b= Z Z am/,n/(em/ ® en/).

m/=0n’'=0

Then for all z;, z,,, z, € Spec H(j)*(R),

Jr(@0, 20)(X)+ fR(@1H T, ©0) (X)) = fr(Tm, 20) (X)+FR(20, Tt an) (X).
Consequently, for all I,m,n, 0 <I,m,n<p-—1,

Ay m + Al+mn = Amn + Al m+n,

where m + n and [ + m are taken modulo p. Thus
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f(ajla xm) + fA(lerm) xn) f(xmy 'I'n) f(zla mern)-

Moreover,
fr(21,0)(X) = 0= fr(0,2,)(X)
for all ;,z,, € Spec H(j)*(R). Thus for all 0 < {,m <p —1,
arp = 0= agm,
and so, ) R
f(l'l,O) =0= f(oal‘m)

It follows that f is in C(Z/pZ, R).

For the converse, suppose that f : Z/pZ x Z/pZ — R is a cocycle ob-
tained from the natural transformation f : Spec H(j)* x Spec H(j)* —
G,. Then for all 0 < I,m,n < p—1 one has

Qrm + Ql4mn = Alm+n + Am.,n,
where m + n and [ + m are taken modulo p. Thus,
p—1 p—1 p—1
Z Z Z(&l,m + Qrpmn) (€1 @ € @ €)
=0 m=0 n=0

-1 p—1 p—1

’U
"G

al ;m+n + am,n)(el ® €m & en)-
l

Il
=)

m=0n

Il
=)

Consequently, with A = Agj-,

(Z i: arm(€ @ €m @ 1)) + (Z 7 apn(Aler) ® en)>
(&

=0 n=

1 p—1 p—1
U (1 ® € @ en)> + apk(er ® A(ek))> :
0

!
Thus, for any R-algebra A and x,y,z € Spec H(j)*(A).

p—1 p—1 p—1 p—1
(zRYR2) (ZZalm el®€m®1)> (rRY®z2) ( arn(Aex ®€n)>

=0 m=0 k=0 n=0

p—1 p-1 p—1 p—1
= (l‘®y®2) (Z am,n(l R em @ en)) 17@3/@2 < ajk 6[ ® A ek )) ’

1=0 k=0
which implies

(2®Yy)os(X)+((2+y) ©2)9r(X) = (y@2)ds(X) + (2 (y+2)) o5 (X).
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Thus

fa(z,y)(X) + fale +y, 2)(X) = faly, 2)(X) + falz,y + 2)(X).

Now, suppose 0 = a0, form’ =0,...,p—1, and let = € Spec H(j)*(A).
Then

p—1 p—1

O = (Q}' ® )\AEHQ)*)( Z Z am/m/(em/ ® en’))
m/=0n’'=0

p—1 p—1

= (z®0)( Z Z Ut gt (€ @ €v))

m/=0n'=0
= (z®0)ps(X)
= Jfa(z,0)(X).
In a similar manner, the condition 0 = ag,, for n =0,...,p — 1, yields
fa(0,y)(X) = 0 for y € Spec H(j)*(A). Consequently, f satisfies the
cocycle conditions (3), (4).
O
Proposition 3.2. Let f € C(Spec H(j)*, Ga). Then f € B(Spec H(j)*, Ga)
if and only if f = 0g for some natural transformation g : Spec H(j)* —
G, with ga(0) =0 for all commutative R-algebras A.

Proof. Let f € B(Spec H(j)*, G,). Then there exists a natural trans-
formation g : SpH(j)* — G, for which

Jr(m, 20)(X) = gr(2m)(X) — gr(@m + 20)(X) + gr(za)(X)  (5)
and ga(0) = 0 for all commutative R-algebras A. Let

p—1 p—1

o X — Z Zam,n(em ® en),

m=0 n=0

and ¢4 : X — an_:lo a,, denote the algebra maps corresponding to f, g,
respectively. From (5) we obtain

Amn = Am — Am4n + G,

for all 0 < m,n < p—1 (m+n taken modulo p.) It follows that f =0g.

For the converse suppose that f = 0g for some natural transforma-
tion g : SpH(j)* — G, with g4(0) = 0. Then

Amn = Am — Am4n + Qn,

for 0 <m,n <p—1 (m+ n taken modulo p.) Consequently,
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p—1 p—1
Z am,n(em & en) = Z (am — Qmgn + an)(em & en)
m,n=0 m,n=0
p—1 p—1 p—1
= ) amlen®1) = > arApgy(er) + Y an(l @ey).
m=0 k=0 n=0

(6)

Let x,y € Spec H(j)*(A). Then (6) implies that

(z®y) mz (€ © )

e S alen ) - 2 S Auge(aen) + o9 S wl @)
and so, " - o

(2 © 4)65(X) = 2(65(X)) — (x +1)(65(X)) + y(6,(X)).
Thus
Fa(w. 1) (X) = ga@)(X) — gale +5)(X) + galy)(X),
and so, f = dg.
O

Define:

C ={reC(Z/pZ,R): r = f for some natural transformation
[ :Spec H(j)* x Spec H(j)* — G,}.

B = {r e C': r = 9§ for some natural transformation ¢ : Spec H(j)* — G,
with g4(0) = 0 for all commutative R-algebras A}.

Proposition 3.3. Ezt'(Spec H(j)*, G,) = C/B.

Proof. This follows from Proposition 3.1 and Proposition 3.2. U

A cocycle in r : Z/pZ x Z/pZ — R in C will be given as the p x p
matrix
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ap,o apa1 ©tr Gop-1
aLO 0/1,1 N e a/l,pfl
M, =
ap-10 Qp-11 "** T Qp-1p-1

with 7(Zm,, Tn) = Amp-

Proposition 3.4. A cocycle r € C s congruent modulo Btoa cocycle

of the form
0 0 e 0
0 0 0 w
0 0 0 w w
M, =
0
0 w w w

for some w € R.

Proof. Let r € C. Then r = f for some natural transformation f :
Spec H(j)* x Spec H(j)* — G,. The matrix of f has the form

0 0 0 cee 0
0 ai Qo2 - a1 p—1
0 azq Q22 - a2 p—1
Mf =1 . . . . ,
0 ap11 12 0 Gporp

for elements a,,, € R. M i is symmetric. Since

p—1 p—1
Do tmalem ®ea) € HG) ® H()',
m=0 n=0
p—1 p—1
<Z Z am,n(em & en); ('7' — 1)k X (7‘ — 1)kl> c t(kJrk/)jR,
m=0 n=0

for 0 < k, k" < p—1. In the second row of M, let [ be the smallest
integer < p — 2, for which a;; # 0. Now,



16

p—1 p—1
(S8 amiencanr-toe-1 ) acon

m=0 n=0
Consider the element ¢ = Zi:lo Cm€m With
0 o< m<l
T\ ayy ifm=141.

Now, d¥(c) € t"R for 0 < k < [+ 1. And so, c satisfies the first
[ + 2 conditions for membership in H(j)*. Note that ¢ has only [ + 2

components. However, one can find elements c,,, m = [+2,[+3,...,p—
1, so that ¢ = > P~ 10 Cmem € H(j)*. Now, ¢ corresponds to a natural
transformation

s:Spec H(j)* — Gga,  s4(0) =0,

and a function § : Z/pZ — R. Thus 0§ is an element of B and f + 85
has matrix whose second row satisfies

a1 p=ay;=---=ay =0.

Repeating this process, we find that f is congruent modulo B to a
cocycle (also denoted as f) with matrix

0 0 0 e 0 0

0 0 0 - 0 a,.

0 0 a2 2 T a2 p—2 a2 p—1
M; =

0 0 apay Ap—2,p-1

0 @p11 @p12 o Gporp-2 Gpo1p-1

The cocycle conditions (3), (4) then imply that f is congruent modulo
B to a cocycle in C' with matrix

0 O 0 0

o 0 -+ 0 w
My=10 - 0 w w],

O w w -+ w

for w € R, cf. [3, Theorem 3.4], [4, Proposition 8.2.3].
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Proposition 3.5. Ext'(Spec H(j)*, G,) = Rt%.

Proof. By Proposition 3.4, every coset in C / B can be represented by
a cocycle of the form M, for some w € R. Now, a matrix of the form
M, corresponds to a cocycle in C' if and only if d**¥ (M,,) € Rt*++)i
for all 0 < k, k" < p — 1. And one finds that d** (M) € Rt )7 for
all 0 < k, k' < p— 1, if and only if w € Rt?.

Now, suppose that the cocycle r & C' with matrix M, is of the
form r = 0g for some natural transformation ¢ : Spec H(j)* — G,
ga(0) =0. Let ¢y : X = a=3"  _,amen € H(j)* be the algebra map
corresponding to g. Now, r = d¢ implies that

a1+ ay —ay = 0

a, + as — as = 0

a1 + as —aAg = 0

a; + Ap—9 — Ap—1 = 0
a1+ ap-1—ay = w,

hence w = 0.

Let
K ®p — : Bxt'(Spec H(j)*, Go) — Ext'(Spec KC;, Go i)
be the maps that takes the extension
0—G,—G— SpecH(j)* =0
to its “generic” extension over K:
0= Gox - K®rG — SpecKC'; — 0.

The kernel of K ®g — is the group of generically trivial extensions, de-
noted as Ext,, (Spec H(j)*, G,). These are the extensions in Ext' (Spec H(j)*, G.)
that over K appear as

0= Gorx =+ G xC, = C, = 0.
Proposition 3.6. An element of Exty,(Spec H(j)*, Gq) is of the form
0 — G, — Spec R[X + a, B] — Spec H(j)* — 0,

where a = ney + 2nes + - + (p — 1)ne,—1 for somen € K and f =
tley +2t0es + -+ (p— 1)tlep .
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Proof. Let
0—G,—G—SpecH(j)" =0

denote a generically trivial extension corresponding to the cocycle f :
Spec H(j)*xSpec H(j)* — G, whose matrix is M,,. The corresponding
algebra map is ¢y : X — M,,. Asa group scheme, G = G, xSpec H (j)*
with the multiplication twisted by the cocycle f. Over K, M, corre-
sponds to a cocycle

K ® f:Spec KH(j)* x Spec KH(j)* — Spec K[X]

in C'(Spec KH(j)*,Spec K[X]) that is trivial. Thus, K ® f = 0g,
for some natural transformation g : Spec K H(j)* — Spec K[X] and g

—1
corresponds to an algebra map ¢y : X + a, for somea = Y """ apen, €

KH(j)*. As shown above, this implies that w = 0. Moreover,
a=mney +2nes+ -+ (p — 1)ne,_1,

for some n € K (actually, n = a;.)
There is an isomorphism of K-group schemes

g Gox x Spec KH(j)" — Spec K[X] x Spec KC;
defined by

g'(x,y) = (x+9)y),
for z € G, k, y € Spec KH(j)*. The isomorphism ¢’ makes the follow-
ing diagram commute:

0 — SpecK[X] — Guxg xSpecKH(j)* — SpecKH(j)* — 0

| g1 |
0 — SpecK[X] — SpecK|[X]x SpecKC; —  SpecKC; — 0
The Hopf algebra isomorphism corresponding to ¢’ is
UV K[X|®x KC, — K[X]®g KH(j)",
defined as
X®R1—=X®1+1® (ner +2nes +---+ (p— L)ne,—1),

18 —1®p0,
with KO = K[f], 87 = t®-1I,

B=te +20es+ -+ (p—1Dtle, 1.
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If we restrict the map ¢ to R[X| ®r H(j)* its image is
RX®14+1®a, 1] = R[X +a,p].
Thus

0 — Spec R[X] — Spec R[X + a, 8] — Spec H(j)* — 0

is the generically trivial extension corresponding to the cocycle f.

U

Let {emn}, 0 < m,n < p—1, be the basis for K(C, x C,)* that
is dual to the basis {(c¢,7%)}, 0 < ¢,d < p—1 for K(C, x C,). We
have €,,((0%,7°)) = Om.adnp. Equivalently, (em.n, (0% 7°)) = Om.aOnb,
where ( ,) : K(C, x Cp)* x K(C, x C,) = K is the duality map.

Proposition 3.7. An element of Ext;t(SpecH(j)*, Spec H(i)*) can be
written in the form

0 — Spec H(i)* — Spec Ry + a, ] — Spec H(j)* — 0,

where

a = 77(60,1 + €11 + -+ €p_1,1) + 277(60,2 + €1,2 + -+ 6p_1,2)
+---+ (p - 1)77(60717_1 + €1p-1 +-- ep_lvp_l),

B = t(eogg+eii+ - +ep11)+2t0(ega+era+ +ep12)
-+ (p— Dt (eop-1 +e1p1t -+ ep1pa),

v o= ti(el,o +e1+--Ferp1)+ 2ti(€2,o +eg1+Fexp1)
o (p— Dt (ep-10+ €po11 + o+ epo1p-1)

Proof. Recall the short exact sequence in the faithfully flat topology
(Proposition 2.6)

0 — Spec H(i)* = G, = G, — 0 (8)
with U given by the Hopf map
¥ R[X]| — R[X],

P(X) = XP — t=DiX . Applying (8) in the long exact sequence in
cohomology yields the isomorphism

Ext,,(Spec H(j)*, Spec H (i)*)
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= ker(Exty,(Spec H(j)", Ga) = Exty,(Spec H(j)", Ga)),  (9)

cf. [3, Corollary 3.6b]. From the isomorphism (9) we conclude that an
arbitrary element of Ext,,(Spec H(j)*, Spec H(i)*) can be written as

0 — Spec (R[X]/(¥(X))) — Spec (R[X + a, 8]/ (¢¥(X)))
— Spec H(j)* — 0. (10)
Over K, short exact sequence (10) appears as

0 — Spec KC}, — Spec K(C,, x C,)" — Spec KC}; — 0.
And so, (10) is now

0 — Spec R[a] — Spec R[y + a, 5] — Spec H(j)* — 0 (11)

where

a = nlepr+en+--+ep11)+2n(ega+eia+ - +ep_12)
4+ + (p—1Dnleop-1+e1p—1+ -+ ep_1p-1),

g = tj(€0,1 +ei1+ - tep11)+ 275]‘(60,2 +eiot+ -t epi2)

+-+(p—Dt(eop-1+e1p-1+ -+ ep1p-1)

v = terot+err+ - +eip 1)+ 2t (eag+eas+ o+ eap)

4+ (p — 1)t’(ep_1,o +ep_11 -+ ep—lvp—l)'

0
Let
o - o (—#] ) —
(o, 1)1 = i (;:)((a, 1) —(1,1)™,

ord(u) > —i + (j/p), be the Elder order in K(C, x C,), given in the
Introduction.

Proposition 3.8. Let n = ut'. Then H(i,j, n)* = R[y + a, 3].
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Proof. One shows directly that (R[y + a, ], H(i,j,n)) C R, thus
Rly+a,B] C H(i,j, p)*

Moreover, disc(R[y+a, 5]/R) = disc(H (i, j, u)*/R), hence H (i, j, u)* =
Rly +a, f].
U

Proposition 3.9. Let H be an arbitrary R-Hopf order in K(C,, x C,)
that induces the short exact sequence

R— H(i)—»H— H(j) = R.
Then H is an Elder order in K(C, x C,).

Proof. Taking duals yields the short exact sequence
R—H(j)" > H" — H(i)" = R,

and applying Spec — gives the short exact sequence

0 — Spec H(i)* — Spec H* — Spec H(j)* — 0,
which is an element of Ext,,(Spec H(j)*, Spec H(i)*). By Proposition
3.7, H* is of the form R[y + a, ] for v, 5 as above and

a = nlegr+ein+--+ep11)+2n(ega+ero+ - +ep_12)
++(p— 1)77(60,13—1 +teip-1+ -+ e10—1,17—1)’

for some n € K. Since R[y + a, (] is an R-algebra, a? € R[f] = H(j)*.
Hence

ord(n”) = pord(n) = j,
and so ord(n) > j/p. Let u = n/t". Then

ord(ut") = ord(n) > j/p,

and so, ord(u) > —i + (j/p). Now the Elder order H(i,j, ) exists
and H(i,j, )" = Ry + a,]. Consequently, H(i,j, )" = H*, and so
]
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