
PURELY INSEPARABLE FIELD EXTENSIONS

LINDSAY N. CHILDS

Abstract. We survey some of the research on purely insepara-
ble field extensions, especially between 1968 and 1975 by Sweedler,
Gerstenhaber, Rasala, Chase and Waterhouse, and ask about con-
nections between purely inseparable field extensions and Hopf Ga-
lois extensions. A bibliography is included.

1. Basic Definitions

Throughout, k be a field of characteristic p > 0.
A finite extension K/k of fields is purely inseparable if for every α

in K, αp
m

is in k for some m ≥ 0. (There is an extensive theory of
infinite extensions of fields that I will pass over.)

If K/k is finite and purely inseparable, then [K : k] = pe for some
e. (For if α is in K, then a = αp

m
is in k for some minimal m. So

Irr(α, k) = xp
m−a for some a in k. Then [K : k] = [K : k(α)][k(α) : k].

To show [K : k] = pe apply induction.)
Examples:
(1) Let K = k[x] with xp

e
= a, a in k, a1/p not in k. Then xp

e − a is
irreducible, so K is a field. K/k has exponent e. K is called a primitive
extension of k.

(2) Let a1, . . . , an be independent indeterminates over the prime field
Fp and let k = Fp(a1, . . . , an). Then

k[Xi]/(X
pei
i − ai) = k[xi]

is primitive, and

K = k[x1, . . . , xn] ∼= k[x1]⊗k . . .⊗k k[xn]

is a purely inseparable extension of k. K is a modular p. i. extension
of k.

(3) ([Sw68], Example 1.1) Let k = Fp(a, b, c), where a, b, c are inde-
pendent indeterminates, and let

K = k[z, xz − y] where zp
2

= c, xp − a, yp = b.

Then K is not modular over k.
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More examples later.

2. Prehistory

Purely inseparable field extensions K/k were studied by Teichmuller
[Te36], Pickert [Pi49], [Pi59], Jacobson Ja44].

For x in K, the least positive integer e so that xp
e

is in k is the
exponent of e, denoted e[x : k]. The largest e[x : k] for all x in K is the
exponent of K/k. In this talk all p. i. field extensions will have finite
exponent.

For x in K, x is normal in K/k if e[x : k] is the exponent of K/k, i.
e. e[x : k] = max{e[y : k]|y ∈ K}.

A normal sequence x1, . . . , xr in K/k is a sequence such that x1 is
normal in K/k and if Ki = k[x1, . . . , xi], then xi+1 is not in Ki and
xi+1 is normal in K/Ki: that is, xi+1 has maximal exponent in K/Ki.

A normal generating sequence {x1, . . . , xr} for K/k is a normal se-
quence such that K = Kr = K[x1, . . . , xr].

Every purely inseparable extension K/k has a normal generating
sequence (Pickert).

3. Derivations

A Lie algebra over K is a K-vector space L equipped with a bilinear
operation

[ ] : L× L→ L

satisfying

• for all a, b ∈ K, [a, b] = −[b, a], hence [a, a] = 0 for all a in L
• the Jacobi identity:

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

for all a, b, c in K.

Let K/k be a field extension. A k-derivation D on K is a k-linear
map K → K such that

D(ab) = D(a)b+ aD(b)

for all a, b in K.
Note that D(1) = D(1 · 1) = D(1) + D(1), hence D(1) = 0, hence

D(k) = 0. The set
{a ∈ K : D(a) = 0}

is the field of constants of D.
The K-space of k-derivations of K is denoted Dk(K).
Dk(K) ⊂ Endk(K) is a Lie algebra under Lie commutators:

[D1, D2] = D1D2 −D2D1
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and is closed under pth powers:

Dk(ab) =
∑(

k

i

)
(Di(a)Dk−i(b)

for all k, so

Dp(ab) = Dp(a)b+ aDp(b).

Hence Dk(K) is a restricted Lie algebra, because if D is a derivation,
then so is Dp = D ◦ . . . ◦D (p factors).

Given a derivation, we can define an algebra homomorphism

Φ : K → K[t]/(t2)

by

Φ(a) = a+D(a)t.

Then Φ(ab) = Φ(a)Φ(b), and Φ(a) = a iff a is in the field of constants
of D.

Example: Let K = k[x] with xp = a in k. Define a k-derivation D :
K → K by D(x) = 1. Then D(xr) = rxr−1 so D(xp) = 0 = D(a). So
D is a k-derivation of K, and Dk(K) = KD. The restricted universal
enveloping algebra of Dk(K) is the exponent one truncated polynomial
algebra K[D] since Dp = D ◦ . . . ◦D = 0.

Jacobson [Ja44] used derivations in a Galois theory for purely insep-
arable extensions of exponent one.

Let K/k have exponent one, K = k[x1, . . . , xm], x1, . . . , xm a normal
generating sequence.

A p-basis of K/k is a set {x1, . . . , xr} so that xα|α ∈ Frp is linearly
independent over k.

Let K/k be purely inseparable and let D be a restricted Lie algebra
of k-derivations of K. Let F be the field of constants of D.

The Galois theory is an inverse correspondence between finite re-
stricted Lie sub-algebras D′ of k-derivations of K and subfields F ,
k ⊆ F ⊆ K, by:

D′ 7→ F, the field of constants of D′;
F 7→ DF (K).

If dimK(D′) = r with K-basis D1, . . . , Dr, and the field of constants
of D′ is F , then K has a p-basis over F with r elements, and EndF (K)
has a K-basis consisting of monomials Dα in a K-basis of D, where α
runs through Frp. (Thus K/F is a H-Hopf Galois extension for H =
the restricted universal enveloping algebra of D′.)

Jacobson’s exponent one purely inseparable Galois theory motivated
a lot of research in the period 1968-75.
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4. Sweedler

Sweedler (Annals, 1968, [Sw68]): A finite purely inseparable field
extension K/k is primitive if K = k[x] with xp

e
in k. A modular

extension is a tensor product of primitive extensions:

K = k[x1]⊗k . . .⊗k k[xr].

Every finite purely inseparable field extension K/k of exponent one
is modular.

Example (3) illustrates that not all purely inseparable extensions of
exponent > 1 are tensor products of primitive extensions.

Sweedler characterized modular extensions in two other ways. First
in terms of higher derivations.

Definition. A higher derivation of K/k of length n is a series

D = (D0 = I,D1, . . . , Dn)

of k-homomorphisms from K to K such that for all m,

Dm(ab) =
m∑
i=0

Di(a)Dm−i(b).

Let T = K[t] = K[z]/(zn+1), a truncated polynomial algebra and
define Φ : K → K[t] by

Φ(a) = D0(a) +D1(a)t+ . . .+Dn(a)tn.

Then the condition that Φ be a k-algebra homomorphism, i. .e. Φ(ab) =
Φ(a)Φ(b) translates into

Dm(ab) =
m∑
i=0

Di(a)Dm−1(b)

for all m. So D0 = I and the sequence {I,D1, . . . , Dn} is a higher
derivation of K/k. In particular, D1 is an (ordinary) derivation of K.

Conversely, every higher derivation of length n yields a k-algebra
homomorphism Φ from K to K[t] with tn+1 = 0.

Gerstenhaber calls Φ an approximate automorphism of K/k; Rasala
calls Φ a variation of K/k in T .

The field of constants of a higher derivation D (or its corresponding
approximate automorphism) is the set

{a ∈ K|Φ(a) = a}.
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Sweedler’s second characterization uses linear disjointness.

Definition. Let L,M be subfields of K containing k. Then L and M
are linearly disjoint over k if every finite set of elements of L that are
linearly independent over k are linearly independent over M .

This is a symmetric definition: L and M are linearly disjoint over k
iff the multiplication map L⊗k M → K is one-to-one.

Sweedler:

Theorem 4.1. Let K/k be a purely inseparable field extension of finite
exponent. TFAE

• K = k[x1]⊗k . . .⊗k k[xr] (that is, K/k is modular)
• k is the field of constants of the set of higher derivations of K/k

• Kpi and k are linearly disjoint for all positive i.

(Mordeson and Vinograde [MV69] have an additional condition re-
lated to canonical generators of Pickert.)

Sweedler notes that Example (3): k = Fp(a, b, c),

K = k[z, xz − y] where zp
2

= c, xp − a, yp = b.

is not modular because zp is in the field of constants of all higher
derivations of K/k.

Sweedler also proved:

Theorem 4.2. Let K/k be a purely inseparable field extension of finite
exponent n. Then there exists a minimal field S = S(K/k) containing
k such that S/k is modular. S/k has exponent n.

S is the modular closure of K/k.

5. Approaches to the proof of the equivalence

There are at least four different proofs of these results in the liter-
ature, by Sweedler [Sw68], c.f. [Cj06]; Gerstenhaber [Ge68]; Rasala
[Ra71], c.f. [Ka89]; and Waterhouse [Wa75], c.f. [Ka89].

Assume that K/k is finite, purely inseparable of exponent e.
The argument that if K = k[x1, . . . , xn] ∼= k[x1]⊗. . .⊗k[xn] then k is

the field of constants of the set of higher derivations of K/k (“K/k has
enough approximate automorphisms”) is already in Jacobson’s book
[Ja64]. First do it for a primitive extension

K = k[x] = k[T ]/(T p
e − c).
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Define Φt : K → K[t], tp
e

= 0, by Φt(x) = x+ t. Then

Φt(x
pe) = (x+ t)p

e

= xp
e

= c = Φ(c),

so Φ is a well-defined k-algebra homomorphism.
Let

∑d
i=0 aix

i be in K with ad 6= 0. Then

Φt(
d∑
i=0

aix
i)

has leading term adt
d as a polynomial in t. So Φ(f) = f implies d = 0

and f is in k.
It follows easily that if K = k[x1] ⊗k . . . ⊗k k[xn], then K/k has

enough approximate automorphisms.
Here is Sweedler’s argument that if K/k has enough approximate

automorphisms, then k and Kpn are linearly disjoint for all n > 0.
First we observe that if Φt is an approximate automorphism of K/k,

then Φ yields by restriction an approximate automorphism ofKpn/Kpn∩
k. For

Φt(a
p) = Φt(a)p (mod tm+1).

Hence φj(a
p) = 0 if p does not divide j, and φpi(a

p) = (φi(a))p for
pi ≤ m. So for all n > 0,

Φt : Kpn → Kpn [t],

hence φj maps Kpn to Kpn for all φj.
Also, if a is in k, b in K, then since Φt(a) = a, we have φj(ab) =

aφj(b).
Now, suppose k and Kpn are not linearly disjoint. Then there is a

finite set {γi} of elements of k, linearly independent over k ∩Kpn but
linearly dependent over Kpn . Hence there are elements {ai} in Kpn , so
that

0 = γ1a1 + . . .+ γmam.

Assume given such a dependence relation with m minimal. By dividing
by a1 we may assume a1 = 1. Since the γi are linearly dependent over
k ∩Kpn , we may assume that a2 is not in k ∩Kpn , hence there is an
approximate automorphism Φt of K/k such that Φt(a2) 6= a2, hence a
coefficient φj of Φt so that Φj(a2) 6= 0.

Apply φj to the dependence relation

0 = γ1a1 + . . .+ γmam.

Since γ1 is in k, we have φj(γ1) = γ1φj(1) = 0, and

0 = γ2φj(a2) + . . .+ γmφj(am).
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This is a shorter dependence relation over k ∩ Kpn , a contradiction.
Hence k and Kpn are linearly disjoint over their intersection.

The difficult part of the equivalent conditions of Sweedler’s character-
ization of a modular extension K/k is getting from linear disjointness,
or from enough approximate automorphisms, to the description of K
as a tensor product of primitive extensions.

• Gerstenhaber gets from enough approximate automorphisms to
modularity by an induction argument, proving a limited version
of linear disjointness on the way.
• Sweedler does it by setting up and working with a lower trian-

gular matrix of generating elements of K/k.
• Waterhouse defines a purely inseparable extension K/k to be

modular if k and Kpn are linearly disjoint for all n. This allows
him to extend the notion of modular to infinite extensions with
infinite exponent. He obtains as a special case the result that
if Kpn ⊆ k for some n, that is, if K/k has finite exponent, then
K is a tensor product of primitive extensions. But there exists
a countable dimensional modular extension K/k which is not a
tensor product of primitive extensions.

As for Sweedler’s theorem about the modular closure of a finite ex-
ponent purely inseparable extension K/k, Rasala approaches this as
follows:

Pickert ([Pi50]): Let {x1, . . . , xr} be a normal generating sequence
for K/k, with Let Ki = k[x1, . . . , xi] and let pei = qi = [Ki+1 : Ki].
Then

xqi ∈ k[xqi1 , . . . , x
qi
i−1].

Hence

xqii =
∑
α∈Ii

ai,αx
qiα

for Ii a multi-index set and ai,α in k.
This was a starting point for Rasala [Ra71]:
In some algebraic closure of k, let di,α be the qi th root of ai,α. Let

S(K/k) = K[di,α]

for all 1 ≤ i ≤ r and all α. Then S is a splitting field for K/k: that is,
A = S ⊗k K is a simple truncated polynomial algebra.

To show that A is a STPA, define ui in

A = S ⊗k K = K[di,α]⊗k k[xq11 , . . . , x
qr
r ]
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by

ui = xi −
∑
α∈Ii

di,αx
α.

Then uqii = 0 and

A = S[u1, . . . , ur].

Rasala and Sweedler showed that if you begin with an exponent n
purely inseparable extension K/k and take its minimal splitting field
S1 = S(K, k) of K/k, it will be exponent n but may not be modular
over k. (Example (6) below.) But iterate:
let S2 = S(S1, k), S3 = S(S2, k), etc.,
then the chain stops after a finite number of steps to give a field S so
that S/k has exponent n and is modular.

If K = k[x1, . . . , xr] is modular over k with e(xi, k) = ei, then K ⊗k
K = K[u1, . . . ur] where ueii = 0. Thus K ⊗k K is a simple truncated
polynomial algebra.

Waterhouse observes that for a finite modular extension K/k,

K ⊗K ∼= A

where the simple truncated polynomial algebra A is isomorphic to K[G]
for a finite abelian p-group.

He extends this idea to show that if G is any p-primary abelian group,
finite or not, then there exists a modular extension K/k (modular in
the sense of linear disjointness) so that K⊗kK ∼= K[G]. But he has an
example of a modular extension K/k such that k⊗kK is not isomorphic
to k[G] for any abelian group.

Examples:
(4) ([Sw68], Example 1.2) Let k = Fp(a, b, c), where a, b, c are inde-

pendent indeterminates, and let

K = k[z, xz − y, xp, yp] where zp
2

= c, xp
2 − a, yp2 = b.

Then

K = k[z]⊗k k[xz + y]⊗k k[yp]

so K is modular over k. But K is not modular over K[xp, yp].

(5) ([Ra71], p. 427) Let k = Fp(a, b, c) where a, b, c are independent
indeterminates, and let

K = k[x,w] where xp
2

= a, wp = b+ cxp.
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Then K is contained in the modular extension S = k[x, y, z] where
yp = b, zp = c.

(6) ([Ra71], p. 427). Let k = Fp(a, b, c, d) where a, b, c, d are inde-
pendent indeterminates, and let

L = k[u, v],M = k[z, w]

where up
3

= d, vp
2

= a+(bp+cpa)up
2
; and zp

2
= a, wp

2
= bp+cpa. Then

the splitting field of L/k is N = k[u, z, w]; the splitting field of M/k is
k[z, b1/p, c1/p] and the splitting field of N is S = k[u, z, b1/p, c1/p]. which
is modular over k. So L/k requires two iterations of a splitting field
before one reaches a modular extension of k containing L.

An exposition of the papers of Rasala and Waterhouse may be found
in [Ka89].

There are a number of papers by Davis, Devaney, Haddix, Heerema,
Mordeson, Tucker, Vinograde and Zerla on aspects of the structure of
purely inseparable field extensions, both finite and infinite. On the lat-
ter, there is Mordeson and Vinograde’s LNM [MV70] and Waterhouse
[Wa75]. Mordeson and Deveney [DM79], [Mo81] have commentaries on
aspects of Waterhouse’s treatment of infinite purely inseparable exten-
sions.

6. Galois theory

Davis [Da69] seems to have the first Galois theory extending Jacob-
son, for exponent 2 field extensions.

Heerema [He71]: For K of characteristic p, let A be the subgroup
of AutK(K[x]/(xp

e+1) consisting of f with f(x) = x. Then Heerema
developed a Galois theory involving subgroups of A and subfields F of
K such that K/F is modular of bounded exponent. The theory was
further developed by Mordeson [Mo75].

Gerstenhaber and Zaromp [GZ70] developed a Galois theory using
higher derivations. Another version was developed by Heerema and
Devaney [HD74]. There is an exposition of these theories in [DM96].

I haven’t looked at any of that work in detail.

7. Hopf Galois structures

Chase and Sweedler [CS68] generalized the notion of Galois extension
of fields to that of a Hopf Galois extension, or of a Galois object relative
to a Hopf algebra. For k a field and H a finite cocommutative k-Hopf



10 LINDSAY N. CHILDS

algebra, a field extension K/k is an H-module algebra if

h(ab) = ∆(h)(a⊗ b)

for all a, b in K and h in H, and h(1) = ε(h)(1) . Then K/k is an
H-Galois extension if the map

j : K ⊗k H → Endk(K), j(a⊗ h)(b) = ah(b)

is bijective. (The theory works to some degree much more generally
than for field extensions.)

Chase and Sweedler developed a Galois theory for Hopf Galois exten-
sions of fields. (Actually they developed it for H∗-Galois objects.) One
motivation was to extend Jacobson’s exponent one Galois theory. In
the exponent one case, K/k is a H-Galois extension for H the restricted
universal enveloping algebra of D(K/k), so the Chase-Sweedler theory
apparently recovers Jacobson’s theory (c.f. [Ch71]). But for modular
extensions K/k of exponent > 1, there appears to be no ”natural” k-
Hopf algebra acting on K that makes K/k into a Hopf Galois extension
to which the Chase-Sweedler setup can apply–c. f. [Ho74], pp. 222ff.

Explicit descriptions of Hopf Galois structures on purely inseparable
field extensions are scattered and cryptic. Here is what I found:

(1) [GP87, p. 240]: “Many purely inseparable extensions are H-
Galois [CS69]”.

(2) [Ch69, p. 16]: Let A = k[z]/(zp
n
) = k[t] with tp

n
= 0. Then A

has, in a unique way, a Hopf algebra structure with t primitive:

∆(t) = t⊗ 1 + 1⊗ t, ε(t) = 0, λ(t) = −t.

Let S = k[x] be a primitive purely inseparable field extension of k of
exponent n. Then S is a Galois A-object with

α : S → S ⊗ A

by

af(x) = x⊗ 1 + 1⊗ z.
The same example, with A∗ = H acting on S/k, is in Sweedler’s

book [Sw69, p. 215] as an “Example-Exercise”.

(4) In [Ch74], Section 5, Chase proves:

Theorem 7.1 (Chase’s Proposition 5.2). The conditions below are
equivalent for any finite field extension K/k:
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• K/k is a principal homogeneous space (PHS) for some truncated
k-group scheme G;
• K/k is a principal homogeneous space (PHS) for some commu-

tative truncated k-group scheme G;
• K/k is purely inseparable and modular.

Part of proof: Suppose K/k is purely inseparable and modular, so

that K = k[x1, . . . , xn] with only the relations xp
ei

i = ai for some
a1, . . . , an in k and e1, . . . , en > 0. Let

C = k[t1, . . . , tn], tp
ei

i = 0.

Then C is a truncated polynomial algebra, and is a Hopf k-algebra by
defining ∆, ε and λ by

∆(ti) = ti ⊗ 1 + 1⊗ ti
ε(ti) = 0

λ(ti) = −ti
for 1 ≤ i ≤ n.

Then C is a commutative and cocommutative Hopf k-algebra, hence
G = Spec(C) is a commutative k-group scheme. Then K/k is a PHS
for G with action α : K → K ⊗ C defined by

α(xi) = xi ⊗ 1 + 1⊗ ti.

For K/k finite and modular, Chase defines the truncated automor-
phism scheme Gt(K/k) by

Gt(K/k)(T ) = AutT (K ⊗k T ).

for any truncated polynomial k-algebra T . Given G = Spec(C) with
C as just described,

Gt(K/k)(T ) = Algk(C,K ⊗ T ).

If K = k[α1, . . . , αs] with α
pej
j = 0, and n = [K : k], then Gt(K/k) is

represented by the truncated polynomial algebra

P (K/k) = k[ti,j], i = 1, . . . , n, j = 1, . . . , s

with
tp

ej

i,j = 0 :

that is,
Gt(K/k), T ) = Algk((P (K/k), T ).

The action of Gt(K/k) on K/k is induced by the coaction map

θ : K → K ⊗k P (K/k),
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given by

θ(αj) = αj ⊗ 1 +
n∑
i=1

βi ⊗ ti,j

where {β1, . . . , βn} is some k-basis of K.
Chase shows that Gt(K/k) is independent of the choice of G =

Spec(C) making K/k into a PHS.
[Ch74, p. 471]: “Scrutiny of the simplest examples shows that a

modular extension can be a PHS for many different truncated group
schemes G.” But if G is a truncated k-group scheme acting on K/k,
then there is a unique morphism G → Gt(K/k) of k-group schemes
that preserves this action.

There are mysterious potential connections between Chase’sGt(K/k),
Heerema’s subgroup ofAutK(K[x]/(xp

e+1) , and Weisfield’s result [We65]
that K/k is modular iff k is the constant field of a single approximate
automorphism.

8. Automorphism schemes

Chase’s work relates to the automorphism scheme of a finite field
extension:

AutK/k(S) = {S − algebra automorphisms of K ⊗k S}.

There are a few papers in the literature that study automorphism
schemes: Begueri [Be69], Shatz [Sh69], Waterhouse [Wa71], Chase
[Ch72], Chase [Ch74], Sancho de Salas [SS79] between 1969 and 1979.
I didn’t have access to the papers of Shatz and Begueri while preparing
this, have a fuzzy recollection that for K/k separable with [K : k] = n,
then the symmetric group Sn shows up somehow.

9. Final remarks

(1) The study of purely inseparable field extensions seems to have
been very fashionable in the period between 1968 and 1981, but then
essentially stopped. Other than expositions by Karpilovsky [Ka89] and
Devaney/Mordeson [DM95], there is almost nothing in the literature–
nearly all the citations to the papers in the 1960’s and 70’s end by
around 1981.

(2) From the point of view of Galois module theory, it would be of
interest to see if there is an analogue of the Greither-Pareigis corre-
spondence for finite modular purely inseparable Galois extension K/k.
Chase’s work hints at the possibility of such an analogue.
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One could ask: what are the Hopf Galois structures on a simple
truncated polynomial K-algebra A? Can one identify the Hopf Galois
structures on A/K that are lifts of Hopf Galois structures on K/k?

Is that a reasonable way to think about the question of determining
the Hopf Galois structures on a finite modular purely inseparable field
extension?

(3) If one could determine Hopf Galois structures on modular p. i.
extensions of local function fields, one might then be interested in the
Galois module structure of the corresponding extensions of valuation
rings. My brief, uninformed search of the literature found virtually
nothing on that. For example, Michael Rosen’s book “Number Theory
in Function Fields” entirely avoids purely inseparable extensions.
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