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Abstract. Let Γ be a group of order mp where p is prime and
m < p. T. Kohl has shown that regular subgroups of Perm(Γ)
normalized by the image λ(Γ) of the left regular representation λ
lie in the normalizer in Perm(Γ) of the p-Sylow subgroup P of
λ(Γ). These regular subgroups correspond by Galois descent to
Hopf Galois structures on a Galois extension of fields with Galois
group Γ. We describe Kohl’s group and outline how to compute
regular subgroups isomorphic to M when Γ and M are semidi-
rect products Cp o Cm of cyclic groups, and indicate connections
with previous work on Hopf Galois structures obtained by other
methods. Details are in a manuscript currently being revised.

1. Definitions and previous work

1969-1986. Chase and Sweedler [CS69] defined the concept of Hopf
Galois extension. (Its scheme-theoretic translation is that of a prin-
cipal homogeneous space for a group scheme.) For field extensions it
generalizes the notion of a Galois extension of fields: let K be a field, L
a finite field extension of K with [L : K] = n, H a cocommutative K-
Hopf algebra, and suppose H acts on L making L an H-module algebra.
Then L/K is an H-Galois extension if the dual γ : L → L ⊗K H∗ of
the action H ⊗K L→ L yields an isomorphism α : L⊗K L→ L⊗K H∗
by α(a⊗ b) = (a⊗ 1)γ(b).

It follows that dimK(H) = n = dimK(L).
For a classical Galois extension L/K with Galois group Γ, H = KΓ

and α becomes the splitting isomorphism

L⊗K L ∼= LG∗.

Chase and Sweedler [CS69] and Sweedler [Sw69] gave as an example
a primitive purely inseparable exponent n field extension. But Chase,
at least, was interested in doing purely inseparable Galois theory, and
by the time of [Ch81], he had decided that a Hopf algebra H whose
dimension over K is equal to [L : K] was not large enough. Hence
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his purely inseparable Galois theory of [Ch81], c.f. [Ch84], used a
truncated automorphism scheme, represented by a K-Hopf algebra of
dimension nn.

The subject lay dormant for 18 years.

1987. Instead of looking at purely inseparable field extensions, Grei-
ther and Pareigis [GP87] looked at separable extensions, and showed
thatthere exist non-trivial Hopf Galois structures for separable field ex-
tensions. In fact, every Galois extension with non-abelian Galois group
has at least two Hopf Galois structures, one by the group ring of the
Galois group, the other by the Hopf algebra Hλ = L[Γ]Γ, where Γ acts
on L via the Galois action and on Γ by conjugation (a non-trivial ac-
tion if Γ is non-abelian). They showed that for finite Galois extensions
of fields with Galois group Γ, Hopf Galois structures are bijective with
regular subgroups M of Perm(Γ) normalized by λ(Γ), as follows:

If H acts on L making L/K a Hopf Galois extension, then L ⊗K
H acts on L ⊗K L ∼= LΓ∗ making the right side an L ⊗K H-Galois
extension. It turns out that L-Hopf algebras that can make LΓ∗ a Hopf
Galois extension of L must have the form LM where M is a regular
group of permutations of the standard basis {eγ} of LΓ∗. Greither
and Pareigis showed that Galois descent yields a bijection between
Hopf Galois structures on L/K and regular subgroups M of Perm(Γ)
normalized by λ(Γ).

For a set of groups {N} representing isomorphism types of groups
of order |Γ|, if M ∼= N we say H has type N .

1.1. Byott’s translation. ([Ch89]), [By96]: Let R(Γ, [N ]) = set of
regular subgroups of Perm(Γ) isomorphic to N and normalized by
λ(Γ). In [By96] Byott formalized the germ of an idea from [Ch89] to
show that R(Γ, [N ]) is bijective with the set of regular embeddings β of
Γ into Hol(N) ∼= ρ(N) o Aut(N), modulo equivalence by conjugating
β(Γ) by automorphisms of N (“Byott’s translation”). (Here λ, ρ are
the left (right) regular representations of Γ in Perm(Γ).)

This idea enabled one to seek Hopf Galois structures on L/K with
Galois group Γ and of typeN by translating the problem from the large,
complicated group Perm(Γ) to the usually much smaller and friendlier
group Hol(N). Thus most results counting Hopf Galois structures have
used Byott’s translation. For example:
|R(Γ, [Γ])| = 1 iff |Γ| = g and (g, φ(g)) = 1 [By96]
|R(Sn, [Sn])| > (n!)1/2 for n ≥ 5 [CaC99]
|R(Γ, [N ])| = 2 or = 0 for Γ simple, nonabelian, N = Γ [CaC99] or
6= Γ [By04b]
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Γ a finite abelian p-group [Ko98], [By96], [By13], [Ch05], [Ch07],
[FCC12]:

for example, |R(Cpn , [N ])| = pn−1 or = 0 if N ∼= Cpn or not [Ko98];
|R(G, [N ])| = 0 if G,N are abelian p-groups and N has p-rank m

with m+ 1 < p [FCC12].
Γ a semidirect product of abelian groups [By04a], [BC12], [Ch03],

[Ch13], [CCo07]:
for example, there are non-abelian groups Γ so that |R(Γ, [N ]) > 0

for every isomorphism type [N ], e. g. [Ch03].

Hol(N) is much easier to work in than Perm(Γ). But....
Given β : Γ→ Hol(N) a regular embedding, let b : Γ→ N by

b(γ) = β(γ)(1N)

(β regular implies b is bijective, but b is rarely a homomorphism). The
corresponding subgroup M of Perm(Γ) is

M = C(b−1)λ(N) = {b−1πb|π ∈ λ(N)}
The corresponding K-Hopf algebra acting on L is

H = LMΓ

where Γ acts on M via conjugation by λ(Γ). The Hopf algebra H is
not so difficult to identify: see [Ch00, (7.7)]. But the action of H is
harder: an element

ξ =
∑
η∈N

sηη

in H acts on L by

ξ(a) =
∑

sηb
−1(η−1)(a).

(Note b−1!) For Γ cyclic of prime power order, describing b−1 involves
the p-adic logarithm function. For more complicated groups, b−1 is
mostly unstudied.

2. Kohl’s work

Kohl [Ko13] , extending [Ko07] for m = 4: |Γ| = mp, p prime, p > m,
P the p-Sylow subgroup of λ(Γ). Then

Theorem 2.1. Every regular subgroup N of B = Perm(Γ) normalized
by λ(Γ) is contained in NormB(P), the normalizer in B of P.

Big cardinality reduction:
for mp = 28, |Perm(Γ)| = 28! ∼ 3 × 1029, while |NormB(P)| =
74 · 6 · 4! < 4× 105.
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Big structural improvement:

NormB(P) ∼= Fmp o (F×p · Sm),

explicit enough to compute in.

3. A class of examples

Let F×p = 〈b〉, let mh = p − 1 and let bh = u. For e a divisor of m,
let

Fe = Cp oe Cm

= 〈x, y|xp = ym = 1, yx = xu
e

y〉.
Then Fm = Cp × Cm = Cpm, while
F1
∼= Cp o 〈u〉;

if m = p− 1 then F1
∼= Hol(Cp).

Special or related cases:
[Ch03]: Γ = Hol(Cp) a safeprime;
[Ko13]: Γ of order p(p− 1) with p a safeprime (6 cases);
[By04]: Γ of order pq, primes.
[CCo07], [Ch13]: Hopf Galois structures arising from fixed point free
endomorphisms.
[BC12]: Γ of order p(p− 1), p a safeprime, and Hopf Galois structures
arising from fixed point free pairs of homomorphisms from Γ to N .

All of these except [Ch13] use only Byott’s translation.
Kohl’s approach, when available, avoids the issue of b−1.
Recall:

Fe = Cp oe Cm = 〈x, y〉, yx = xu
e

y.

Fm = Cmp.

Let Γ,M range through {Fe|e divides m}. Then we find R(Γ, [M ]), the
regular subgroups N of Perm(Γ) normalized by λ(Γ) and ∼= M . The
counts are

Theorem 3.1. |R(Fe, Fd)| =
• 2pφ(m/d) for e 6= d, d 6= m;
• p for e < m, d = m;
• 2pφ(m/d)− 2(p− 1) for d = e.

Also:
• We can see how the regular subgroups pair off as centralizers of each
other in Perm(Γ).
• We find which elements α(Γ) of R(Γ, [Γ]) correspond to abelian fixed
point free endomorphisms φ, as described in [Ch12]: given such a φ,
we obtain an embedding

α : Γ→ Perm(Γ) by α(gm) = λ(gm)ρ(φ(gm)).
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• The regular subgroups N with P (N) = P yield a single λ(Γ) iso-
morphism class: the corresponding K-Hopf algebra acting on L is

Hλ = L(λ(G))λ(G).

• For d 6= e, d, e 6= m, we find which elements of R(Γ,M) arise from
fixed point free pairs of homomorphisms from Gm to M : in particular:

–none of them if d does not divide e;
–all of them, if d divides e.

4. Kohl’s group

To get these results, we work inside

NormPerm(Γ)(P) = Fmp · U · S
where
U = 〈u〉 for u a fixed element of F×p of order m, and
S ∼= Sm.

Here
P = P (λ(Γ)) = 〈π〉

is the p-Sylow subgroup of λ(Γ).
We may describe how NormPerm(Γ)(P) acts on Γ.
Regularity implies π = π1π2 . . . πm, a product of m p-cycles. Let

Fmp = 〈π1, π2, . . . , πm〉, and fix γj in the support of πj. Then Γ is
the disjoint union of the supports of the πi, and we may lay out the
elements of Γ by writing the πj as p-cycles:

π1 =(γ1, π1(γ1), . . . , πp−1
1 (γ1))

π2 =(γ2, π2(γ2), . . . , πp−1
2 (γ2))

...

πj =(γj, πj(γj), . . . , πp−1
j (γj))

...

πm =(γm, πm(γm), . . . , πp−1
m (γm))

Then elements of Fmp act on Γ in the obvious way, and U and S act on
Γ by:
S permutes the rows {π1, . . . , πm} and
ur in U permutes the columns by sending πkj (γj) to πku

r

j (γj) for u in
U .

Write elements of NormPerm(Γ)(P) as (â, ur, α) for
â = πa11 · · · πamm , α in S.
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LetN be a regular subgroup of Perm(Γ) contained inNormPerm(Γ)(P).
Assume N ∼= Cp od Cm. Write N = P (N)Q(N) where P (N) is the p-
Sylow subgroup of N and Q(N) is a complementary subgroup of order
m. Then Q(N) = 〈(â, ur, α)〉 with α an m-cycle. Kohl showed that if
N = P (N)×Q(N), then P (N) = P ; otherwise, let

N opp = CentPerm(Γ)(N),

then N opp < NormPerm(Γ)(P), and:
exactly one of {N,N opp} has p-Sylow subgroup = P .

(So we can count R(Fe, Fd) by assuming P (N) = P . )

We have NormPerm(Γ)(Γ) = Fmp · U · S.
For Γ ∼= Fe, we have

λ(Γ) = P · Q = 〈(1̂, 1, I)〉 · 〈(0̂, ue, σ)〉
for fixed m-cycle σ.

If P (N) = P , then N has the form

N = 〈((1̂, 1, I), (â, us, α)〉.
If P (N) 6= P , then the exponents on π1, . . . πm in Fmp are given by the
values of a linear character χ : Q → F×p : the generator of P (N) is
(p̂χ, 1, I) where

p̂χ =
∑
γ∈Q

π
χ(γ)
γ(1) .

If Q = 〈q〉, then the linear characters are χi : Q → F×p , defined by

χi(q
k) = umk/i for i = 1, . . . ,m.

Both when P (N) = P or = 〈(p̂χi
, 1, I)〉, the m-cycle α = σt for some

t, so Q(N) = 〈(â, us, σt)〉 for some â in Fmp , s and t mod m.
One obtains constraints on i, â, s and t by requiring that the genera-

tors of N satisfy the relations of Fd and that N is normalized by λ(Γ).
Then we can determine the range of possibilities for those parameters
under those constraints.

What comes out is:

Theorem 4.1. Let e < m and d 6= e be divisors of m. Let T be a
transversal of Um/d in Um = 〈u〉. Let λ(Γ) ∼= Fe and M ∼= Fd. Write

λ(Γ) = P · 〈(0̂, ue, σ)〉
where σ is a fixed m-cycle in S. Then every N ∼= Fd has the form

N = P · 〈(b0p̂χe , u
d, σt)〉

for b0 ∈ Fp and t ∈ T , or

N = 〈(p̂χi
, 1, I), (b0p̂χe , 1, σ

t)〉
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for b0 ∈ Fp, t ∈ T and i satisfying −it ≡ d (mod m).

There are analogous results for the other possibilities for e, d.

The bottom line: when applicable, Kohl’s description is a useful
bridge from previous work counting Hopf Galois structures towards an
explicit description of those Hopf Galois structures.
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